Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (2) : 157-166     DOI: 10.6046/zrzyyg.2022126
|
VideoSAR moving target detection and tracking algorithm based on deep learning
QIU Lei1,2(), ZHANG Xuezhi2, HAO Dawei2
1. Ordnance Enginnering College, Naval University of Engineering, Wuhan 430033, China
2. Ordnance NCO Academy, Army Engineering University of PLA, Wuhan 430075, China
Download: PDF(4182 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The video synthetic aperture radar (VideoSAR) technology is widely used in military reconnaissance, geological exploration, and disaster prediction, among other fields. Owing to multiple interference factors in SAR videos, such as speckle noise, specular reflection, and overlay effect, moving targets are easily mixed with background or other targets. Therefore, this study proposed an effective VideoSAR target detection and tracking algorithm. Firstly, several features of VideoSAR were extracted to construct multichannel feature maps. Then, deeper features were extracted using the improved lightweight EfficientDet network, thus improving the accuracy of SAR target detection while considering algorithm efficiency. Finally, the trajectory association strategy based on bounding boxes was employed to associate the same target in VideoSAR. The experimental results show that the method proposed in this study is effective for SAR shadow target detection and tracking.

Keywords VideoSAR      feature enhancement      target detection      deep learning      feature pyramid network      multi-target tracking     
ZTFLH:  TP79  
Issue Date: 07 July 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei QIU
Xuezhi ZHANG
Dawei HAO
Cite this article:   
Lei QIU,Xuezhi ZHANG,Dawei HAO. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022126     OR     https://www.gtzyyg.com/EN/Y2023/V35/I2/157
Fig.1  Flowchart of feature analysis
Fig.2  Structure of EfficientNet and the multi-scale feature pyramid
Fig.3  Structure of multi-scale feature fusion
Fig.4  Module of track linking
Fig.5  Structure of Bi-LSTM
面积尺寸/像素 舰船目标数量/个
0×0~8×8 269
8×8~16×16 3 231
16×16~32×32 25 302
32×32~64×64 20 842
64×64~128×128 1 209
128×128~n×n 32
合计 50 885
Tab.1  Sizes of ships in SAR images
尺寸/像素 阴影目标数量/个
0×0~8×8 0
8×8~16×16 1 374
16×16~16×16 4 041
32×32~16×16 5
64×64~n×n 0
合计 5 020
Tab.2  Sizes of shadow targets in Sandia data
特征金字塔层级 尺寸设定
1 42
2 82
3 162
4 322
5 642
6 1282
Tab.3  Information of the multi-scale feature pyramid on the ship dataset
特征金字塔层级 尺寸设定
1 102
2 202
3 402
Tab.4  Information of the multi-scale feature pyramid on the Sandia dataset
Fig.6  The curve of the samples
Fig.7  Comparison results of different filters
Fig.8  Analysis of feature on the Sandia dataset
网络模型 准确率 召回率 F1指标
FasterR-CNN 95.68 81.82 88.21
特征金字塔网络 95.70 86.46 90.85
RetinaNet 96.98 88.12 92.34
轻量EfficentDet 98.08 90.23 93.99
多特征输入+轻量EfficentDet 98.35 91.08 94.58
Tab.5  Comparison of the detection results(%)
Fig.9  Visualization of the ship detection results
网络模型 准确率 召回率 F1指标
Faster RCNN 90.11 89.65 89.88
特征金字塔网络 92.44 92.26 92.35
RetinaNet 96.99 94.39 95.67
轻量EfficentDet 97.92 96.37 97.14
多特征输入+轻量EfficentDet 98.85 97.80 98.32
Tab.6  Comparison results of shadow targets detection(%)
Fig.10  Visualization of car detection results at two timesteps
Fig.11  A case in which Bi-LSTM finds the missing target
Fig.12  A sample of our track linking results
跟踪模块 MOTA IDP IDR IDF1
IoU=0.5 73.3 26.1 25.2 25.5
轨迹优化+LSTM 90.5 81.9 80.3 81.1
轨迹优化+Bi-LSTM 91.0 82.1 80.5 81.3
Tab.7  Results of multi-target tracking(%)
[1] Wells L, Sorensen K, Doerry A, et al. Developments in SAR and IFSAR systems and technologies at Sandia National Laboratories[C]// Aerospace Conference.IEEE, 2005.
[2] Wang D, Zhu D Y, Liu R. Video SAR high-speed processing technology based on FPGA[C]// 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC).IEEE, 2019, 1:1-4.
[3] 丁金闪. 视频SAR成像与动目标阴影检测技术[J]. 雷达学报, 2020, 9(2):14.
[3] Ding J S. Focusing algorithms and moving target detection based on video SAR[J]. Journal of Radars, 2020, 9(2):14.
[4] 林旭, 洪峻, 孙显, 等. 一种基于自适应背景杂波模型的宽幅SAR图像CFAR舰船检测算法[J]. 遥感技术与应用, 2014, 29(1):75-81.
[4] Lin X, Hong J, Sun X, et al. New CFAR ship detection algorithm based on a daptive back-ground clutter model in wide swath SAR images[J]. Remote Sensing Technology and Application, 2014, 29(1):75-81.
[5] Huang Y, Liu F. Detecting cars in VHR SAR images via semantic CFAR algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6):801-805.
doi: 10.1109/LGRS.2016.2546309 url: http://ieeexplore.ieee.org/document/7452395/
[6] Kaplan L M. Improved SAR target detection via extended fractal features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2) :436-451.
doi: 10.1109/7.937460 url: http://ieeexplore.ieee.org/document/937460/
[7] 刘冬, 张弓. 基于指数小波分形特征的SAR图像特定目标检测[J]. 西安电子科技大学学报, 2010, 37(2):366-373.
[7] Liu D, Zhang G. Special target detection of the SAR image via exponential wavelet fractal[J]. Journal of Xidian University, 2010, 37(2):366-373.
[8] Sommer L, Schmidt N, Schumann A, et al. Search area reduction Fast-RCNN for fast vehicle detection in large aerial imagery[C]// 25th IEEE International Conference on Image Processing (ICIP).IEEE, 2018:3054-3058.
[9] Li J W, Qu C W, Peng S J. Ship detection in SAR images based on an improved Faster R-CNN[C]// 2017 SAR in Big Data Era: Models,Methods and Applications (BIGSARDATA).IEEE, 2017.
[10] Jiang S, Zhu M, He Y, et al. Ship detection with SAR based on YOLO[C]// IGARSS 2020 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2020.
[11] Kang M, Ji K, Leng X, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8):860.
doi: 10.3390/rs9080860 url: https://www.mdpi.com/2072-4292/9/8/860
[12] Wang R, Xu F, Pei J, et al. An improved Faster R-CNN based on MSER decision criterion for SAR image ship detection in harbor[C]// IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:1322-1325.
[13] An Q, Pan Z X, Liu L, et al. DRBox-v2:An improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11) :8333-8349.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[14] 张椰, 朱卫纲, 吴戌. 全卷积神经网络应用于SAR目标检测[J]. 电讯技术, 2018, 58(11) :1244-1251.
[14] Zhang Y, Zhu W G, Wu X. Target detection based on fully convolutional neural network for SAR images[J]. Telecommunication Engineering, 2018, 58(11) :1244-1251.
[15] Wang H, Chen Z S, Zheng S C. Preliminary research of low-RCS moving target detection based on Ka-band video SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6):811-815.
doi: 10.1109/LGRS.2017.2679755 url: http://ieeexplore.ieee.org/document/7891879/
[16] Zhang Y, Yang S Y, Li H B, et al. Shadow tracking of moving target based on CNN for video SAR system[C]// IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2018:4399-4402.
[17] Xu Z H, Zhang Y, Li H B, et al. A new shadow tracking method to locate the moving target in SAR imagery based on KCF[C]// International Conference in Communications,Signal Processing,and Systems.Springer, 2017:2661-2669.
[18] Liang Z H, Liang C J, Zhang Y, et al. Tracking of moving target based on SiamMask for video SAR system[C]// 2019 IEEE International Conference on Signal,Information and Data Processing.IEEE, 2019:1-4.
[19] Zhang Y, Zhu D Y, Yu X, et al. Approach to moving targets shadow detection for video SAR[J]. Journal of Electronics and Information Technology, 39(9):2197-2202
[20] Henke D, Magnard C, Frioud M, et al. Moving-target tracking in single-channel wide-beam SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11):4735-4747.
doi: 10.1109/TGRS.2012.2191561 url: http://ieeexplore.ieee.org/document/6197707/
[21] Henke D, Dominguez E M, Small D, et al. Moving target tracking in single-and multichannel SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3146-3159.
doi: 10.1109/TGRS.2014.2369060 url: http://ieeexplore.ieee.org/document/7001607/
[22] Ding J, Wen L, Zhong C, et al. Video SAR moving target indication using deep neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10):7194-7204.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[23] Zhao B, Han Y, Wang H, et al. Robust shadow tracking for video SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5):821-825.
doi: 10.1109/LGRS.2020.2988165 url: https://ieeexplore.ieee.org/document/9082172/
[24] 何志华, 陈兴, 于春锐, 等. 一种稳健的视频SAR动目标阴影检测与跟踪处理方法[J]. 电子与信息学报, 2022, 44:1-9.
[24] He Z H, Chen X, Yu C R, et al. A robust moving target shadow detection and tracking method for VideoSAR[J]. Journal of Electronics and Information Technology, 2022, 44:1-9.
[25] 刘雨洁, 齐向阳. 基于长时间间隔序贯SAR图像的运动舰船跟踪方法[J]. 中国科学院大学学报, 2021, 38(5):7.
[25] Liu Y J, Qi X Y. Moving ship tracking method based on long time interval sequential SAR images[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(5):7.
[26] 胡瑶. 基于阴影的SAR多目标跟踪方法研究[D]. 成都: 电子科技大学, 2021.
[26] Hu Y. Research on shadow-based SAR multi-target tracking method[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[27] Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017:936-944.
[28] Tan M, Pang R, Le Q V. EfficientDet:Scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2020:10778-10787.
[1] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[2] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[3] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[4] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[5] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[6] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[7] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[8] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[9] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
[10] SU Wei, LIN Yangyang, YUE Wen, CHEN Yingbiao. Identification of mariculture areas in Guangdong Province and remote sensing monitoring of their spatial and temporal changes based on the U-Net convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(4): 33-41.
[11] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[12] ERPAN Anwar, MAMAT Sawut, MAIHEMUTI Balati. Recognition of cotton distribution based on GF-2 images and Unet model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 242-250.
[13] SUN Yu, HUANG Liang, ZHAO Junsan, CHANG Jun, CHEN Pengdi, CHENG Feifei. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4[J]. Remote Sensing for Natural Resources, 2022, 34(2): 97-104.
[14] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[15] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech