Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 59-64     DOI: 10.6046/zrzyyg.2021279
|
A method for vector geographic information acquisition based on synchronous correction with remote sensing images
CHENG Tao()
National Geomatics Center of China, Beijing 100830, China
Download: PDF(2873 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Given the limitations in the existing vector geographic information acquisition based on remote sensing images, this study proposed a new method, in which the vector geographic information is orthorectified synchronously with remote sensing images. Firstly, the original remote sensing images are no longer processed using high-precision orthorectification, and vector geographic information acquisition is directly carried out based on the original remote sensing images. The original remote sensing images are processed using high-precision orthorectification after the vector geographic information acquisition. Moreover, the vector geographic information is synchronously corrected using the same model based on the original remote sensing images, thus achieving the consistency and synchronization between the remote sensing images and vector geographic information. This method can eliminate the potential risks in data security in the process of field investigation and can help optimize the existing production process and improve the timeliness of vector geographic information acquisition. Taking WorldView-2 remote sensing images as the data source, this study performed the vector geographic information acquisition of two selected typical types of terrain, i.e., plain and mountain, using this method. The results show that this method can ensure that the spatial positioning accuracy of the results can roughly meet relevant requirements and can effectively address the problems of the feature intersection and gaps possibly occurring in the existing improved techniques and methods.

Keywords vector      remote sensing image      correction      RPC      process flow     
ZTFLH:  P237  
  TP391.4  
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tao CHENG
Cite this article:   
Tao CHENG. A method for vector geographic information acquisition based on synchronous correction with remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 59-64.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021279     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/59
Fig.1  WorldView-2 image combined with B5(R),B3(G),B2(B)
Fig.2  Flow chart of the proposed method
Fig.3  Results of vector geographic information acquisition
Fig.4  Correction results of vector geographic information
[1] 唐新明, 王鸿燕. 资源三号卫星应用分析与展望[J]. 航天器工程, 2016, 25(5):1-10.
[1] Tang X M, Wang H Y. Analysis and prospect of application of ZY-3 satellite[J]. Spacecraft Engineering, 2016, 25(5):1-10.
[2] 国务院第一次全国地理国情普查领导小组办公室. 地理国情普查数据采集技术方法[M]. 北京: 测绘出版社, 2013:1-76.
[2] Office of The Leading Group for The First National Geographic Condition Investigation. Technology and method of data collection in national geographic condition investigation[M]. Beijing: SinoMaps Press, 2013:1-76.
[3] 王西萍, 许存玲, 李若, 等. 地理信息数字成果采编一体化流程实现[J]. 测绘标准化, 2017, 33(1):15-17.
[3] Wang X P, Xu C L, Li R, et al. Implementation of collecting and editing integration in the production of geographic information data[J]. Standardization of Surveying and Mapping, 2017, 33(1):15-17.
[4] 程滔, 周旭, 贾云鹏. 地理国情监测与基础测绘联合生产外业作业系统设计思考[J]. 地理信息世界, 2018, 28(4):202-206.
[4] Cheng T, Zhou X, Jia Y P. Design consideration of field surveying system for joint production of geographic national conditions monitoring and basic surveying and mapping[J]. Geomatics World, 2018, 28(4):202-206.
[5] 李虎, 朱恒华, 花卫华, 等. 矢量地理数据安全保护关键技术和方法[J]. 地球科学, 2020, 45(12):4574-4588.
[5] Li H, Zhu H H, Hua W H, et al. Key technologies and methods for vector geographic data security protection[J]. Earth Science, 2020, 45(12):4574-4588.
[6] 王占宏, 吴满意, 田怀启, 等. 单片调绘矢量数据的正射纠正[J]. 测绘通报, 2017(2):75-78.
[6] Wang Z H, Wu M Y, Tian H Q, et al. Ortho-rectification for annotation vector data of single chip image[J]. Bulletin of Surveying and Mapping, 2017(2):75-78.
[7] 申学林, 李见阳, 陈勇, 等. 基于粗纠正卫星影像源进行1∶5万DLG生产“一体化”工艺流程的探索[J]. 测绘, 2009, 32(3):130-132.
[7] Shen X L, Li J Y, Chen Y, et al. The technical exploration of 1∶50 000 database integrative produce based on rough corrective rsdom[J]. Surveying and Mapping, 2009, 32(3):130-132.
[8] 王春波. 浅谈基于粗纠正影像源进行1∶10 000 DLG生产“内外业一体化”工艺流程[J]. 测绘与空间地理信息, 2012, 35(4):178-179.
[8] Wang C B. Discussion on integrated mapping technique for field and indoor work to produce 1∶10 000 DLG based on rough corrective images[J]. Geomatics and Spatial Information Technology, 2012, 35(4):178-179.
[9] 秦绪文, 田淑芳, 洪友堂, 等. 无需初值的RPC模型参数求解算法研究[J]. 国土资源遥感, 2005, 17(4):7-10,15.doi: 10.6046/gtzyyg.2005.04.02.
doi: 10.6046/gtzyyg
[9] Qin X W, Tian S F, Hong Y T, et al. The algorithm for parameters of RPC model without initial value[J]. Remote Sensing for Land and Resources, 2005, 17(4):7-10,15.doi: 10.6046/gtzyyg.2005.04.02.
doi: 10.6046/gtzyyg
[10] 王海侠, 高飞, 胡小华. 基于RPC模型的QuickBird影像正射纠正研究[J]. 现代测绘, 2010, 33(6):13-15.
[10] Wang H X, Gao F, Hu X H. The research about QuickBird images ortho-rectification based on RPC models[J]. Modern Surveying and Mapping, 2010, 33(6):13-15.
[11] 巩丹超, 张永生. 有理函数模型的解算与应用[J]. 测绘学院学报, 2003, 20(1):39-46.
[11] Gong D C, Zhang Y S. The solving and application of rational function model[J]. Journal of Institute of Surveying and Mapping, 2003, 20(1):39-46.
[12] 张过, 李德仁. 卫星遥感影像RPC参数求解算法研究[J]. 中国图象图形学报, 2007, 12(12):2081-2088.
[12] Zhang G, Li D R. The algorithm of computation RPC model’s parameters for satellite imagery[J]. Journal of Image and Graphics, 2007, 12(12):2081-2088.
[13] 刘军, 王冬红, 毛国苗. 基于RPC模型的IKONOS卫星影像高精度立体定位[J]. 测绘通报, 2004(9):1-3.
[13] Liu J, Wang D H, Mao G M. High precision stereo positioning of IKONOS satellite images based on RPC model[J]. Bulletin of Surveying and Mapping, 2004(9):1-3.
[14] 张永生, 刘军. 高分辨率遥感卫星立体影像RPC模型定位的算法及其优化[J]. 测绘工程, 2004, 13(1):1-4.
[14] Zhang Y S, Liu J. The positioning algorithm based on RPC model and its optimizing of stereo images from high resolution remote sensing satellites[J]. Engineering of Surveying and Mapping, 2004, 13(1):1-4.
[15] 陈静波, 宋伟东. 基于有理函数模型的IKONOS单片正射纠正方法研究[J]. 测绘工程, 2008, 17(5):19-22.
[15] Chen J B, Song W D. Research on orthorectification of IKONOS single photo based on rational function model[J]. Engineering of Surveying and Mapping, 2008, 17(5):19-22.
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[4] LI Zhixin, WANG Mengfei, JIA Weijie, JI Song, WANG Yufei. A method for identifying the number of building floors based on shadow information[J]. Remote Sensing for Natural Resources, 2023, 35(3): 97-106.
[5] CUI Ziwei, XU Wenxue, LIU Yanxiong, GUO Yadong, MENG Xiangqian, JIANG Zhengkun. Current status of the acquisition and processing of airborne laser sounding data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 1-9.
[6] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[7] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[8] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[9] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[10] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[11] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[12] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[13] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[14] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[15] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech