Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 22-32     DOI: 10.6046/zrzyyg.2022010
|
A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images
LYU Yanan1(), ZHU Hong1(), MENG Jian2, CUI Chengling3, SONG Qiqi1
1. College of Ecology Environment, Institute of Disaster Prevention, Langfang 065201, China
2. College of Earth Sciences, Institute of Disaster Prevention, Langfang 065201, China
3. Beijing Geoway Information-Technology Co., Ltd., Beijing 100043, China
Download: PDF(5366 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Vehicle detection is a hot research topic in the fields of computer vision, photogrammetry, and remote sensing. With the continuous development of deep learning technology, vehicle detection based on remote sensing images has been applied in fields such as smart city construction and intelligent transportation. This study systematically summarized existent vehicle detection algorithms based on remote sensing images and deep learning models and highlighted the classification, analysis, and comparison of one-stage and two-stage vehicle detection algorithms. Moreover, this study summarized the key technologies of vehicle detection in large-scale and complex backgrounds and analyzed the advantages and disadvantages of mainstream deep learning models of vehicle detection based on remote sensing images. Experiments were conducted to evaluate the YOLOv5, Faster-RCNN, FCOS, and SSD algorithms using DOTA and DIOR datasets. The vehicle detection precision based on the DOTA dataset was 0.695, 0.410, 0.370, and 0.251, respectively and that based on the DIOR dataset was 0.566, 0.243, 0.231, and 0.154, respectively. The experimental results show that the small target scale is still the main factor restricting the vehicle detection performance based on remote sensing images and that the application of deep learning models to the detection of small targets is to be further improved. Finally, based on public datasets and the analysis of existing algorithms, this study proposed the solution and development trend of vehicle detection based on remote sensing images in large-scale and complex backgrounds.

Keywords remote sensing image      vehicle detection      deep learning      analysis method     
ZTFLH:  P237  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanan LYU
Hong ZHU
Jian MENG
Chengling CUI
Qiqi SONG
Cite this article:   
Yanan LYU,Hong ZHU,Jian MENG, et al. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022010     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/22
模型 优点 缺点 检测精度
GoogLeNet[12] 引入超分辨率重建算法加强车辆特征信息 对密集目标检测效果差 自制遥感影像数据集上精度为0.75
AVPN+VALN[13] 提出VALN网络实现车辆方向信息检测,融合深浅层特征信息以提高小目标检测精度 网络结构复杂,训练检测时间成本较高 DLR[14]数据集上精度为0.92
ZF[15] 针对数据集自身特点,结合区域生成网络设置3种对应大小及比例的锚框,加快了检测速度 数据量小、来源单一,模型检测鲁棒性较差 自制遥感影像数据集上精度为0.88
DF-RCNN[16] 融合深浅层特征信息、引入可变形卷积和可变形感兴趣区域池化,改善密集区域小目标检测效果 网络计算量较大,检测耗时较长 自制Google Earth数据集上精度为
0.94
VGGNet[17] 网络层数可以随数据集图像大小进行调整 图像深层特征提取不充分,没有充分利用上下文语义信息 自制Google Earth数据集上精度为
0.89
VGG-16[18] 基于超像素分割提取道路区域进行车辆检测,缩小了检测范围 操作较为复杂,检测时间较长,对于非道路区域内车辆会造成漏检 DOTA[19]数据集上精度为0.73
SORCN[20] 加入道路区域分割提高检测精度 运行速度较慢,无法预测车辆方向信息,模型抗干扰性差,对于非道路区域内车辆无法检测 自制Google Earth数据集上精度为
0.96
Faster R-CNN++[21] 对遥感影像车辆进行多尺度融合及数据增强,提高了模型鲁棒性与小目标检测精度 检测速度较慢,无法实现车辆方向检测 DLR数据集上精度为0.57; Potsdam[22]数据集上精度为0.67; VEDAI[23]数据集上精度为0.458
Tab.1  Comparison of two-stage remote sensing image vehicle target detection
模型 优点 缺点 检测精度
YOLO[40] 基于K-means算法重新计算锚框大小,提高小目标检测精度 数据来源单一,难以应用于其他类型数据 自制Google Earth数据集上精度为
0.95
YOLT[41] 对遥感影像进行有重叠区域的裁剪,确保目标信息完整性 裁剪后的图像具有重叠区域,存在较多冗余计算 自制遥感影像数据集上精度为0.9
YOLOv3[42] 减少特征提取网络层数,增加精细输出特征图来检测小目标 数据集规模较小,鲁棒性较差 自制高分二号卫星影像数据集上精度为0.743
Oriented_SSD[43] 引入目标的角度偏移量,实现车辆角度信息预测 虽实现了角度信息的预测,但精度较低 DLR数据集上精度为0.86; VEDAI数据集上精度为0.8
Tab.2  Comparison of one-stage remote sensing image vehicle target detection
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像1 DOTA 111
检测数量: 11 检测数量: 34 检测数量: 89 检测数量: 110
影像2 DIOR 86
检测数量: 0 检测数量: 0 检测数量: 8 检测数量: 27
Tab.3  Comparison of small scale vehicle target detection results
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像3 DOTA 493
检测数量: 3 检测数量: 95 检测数量: 119 检测数量: 358
影像4 DIOR 327
检测数量: 0 检测数量: 6 检测数量: 33 检测数量: 268
Tab.4  Comparison of intensive small scale vehicle target detection results
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像5 DOTA 68
检测数量: 48 检测数量: 61 检测数量: 61 检测数量: 68
影像6 DIOR 78
检测数量: 0 检测数量: 9 检测数量: 30 检测数量: 78
Tab.5  Comparison of multi-angle small scale vehicle target detection results
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像7 DOTA 40
检测数量: 6 检测数量: 4 检测数量: 30 检测数量: 32
影像8 DIOR 83
检测数量: 7 检测数量: 27 检测数量: 33 检测数量: 60
Tab.6  Comparison of small scale vehicle target detection results under complex background
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像9 DOTA 26
检测数量: 0 检测数量: 7 检测数量: 16 检测数量: 24
影像10 DIOR 33
检测数量: 0 检测数量: 0 检测数量: 13 检测数量: 17
Tab.7  Comparison of moving small scale vehicle target detection results
模型 输入大
小/像素
DOTA DIOR
AP 训练
时间/h
AP 训练
时间/h
SSD 800×800 0.251 31.245 0.154 21.135
FCOS 800×800 0.370 54.510 0.231 63.367
Faster-RCNN 800×800 0.410 96.617 0.243 129.617
YOLOv5 800×800 0.695 43.333 0.566 38.915
Tab.8  Comparison of detection results of different algorithms in public data sets
[1] 刘金明. 基于深度卷积神经网络的遥感图像中车辆检测方法研究[D]. 开封: 河南大学, 2020.
[1] Liu J M. Research on vehicle detection method in remote sensing images based on deep convolution neural network[D]. Kaifeng: Henan University, 2020.
[2] 刘天颖, 李文根, 关佶红. 基于深度学习的光学遥感图像目标检测方法综述[J]. 无线电通信技术, 2020, 46(6):624-634.
[2] Liu T Y, Li W G, Guan J H. Deep learning based object detection in optical remote sensing images:A survey[J]. Radio Communications Technology, 2020, 46(6):624-634.
[3] Cheng G, Han J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28.
doi: 10.1016/j.isprsjprs.2016.03.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271616300144
[4] 成喆, 吕京国, 白颖奇, 等. 结合RPN网络与SSD算法的遥感影像目标检测算法[J]. 测绘科学, 2021, 46(4):75-82,99.
[4] Cheng Z, Lyu J G, Bai Y Q, et al. High-resolution remote sensing image object detection algorithm combining RPN network and SSD algorithm[J]. Science of Surveying and Mapping, 2021, 46(4):75-82,99.
[5] Alam M, Wang J F, Cong G, et al. Convolutional neural network for the semantic segmentation of remote sensing images[J]. Mobile Networks and Applications, 2021, 26:200-215.
doi: 10.1007/s11036-020-01703-3 url: https://doi.org/10.1007/s11036-020-01703-3
[6] Ji H, Gao Z, Mei T, et al. Vehicle detection in remote sensing images leveraging on simultaneous super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4):676-680.
doi: 10.1109/LGRS.2019.2930308 url: https://ieeexplore.ieee.org/document/8792159/
[7] 张昭, 姚国愉, 李雪纯, 等. 基于改进Faster R-CNN算法的小目标车辆检测[J]. 科技创新与应用, 2021(4):28-32.
[7] Zhang Z, Yao G Y, Li X C, et al. Small target vehicle detection based on improved Faster-RCNN algorithm[J]. Science and Technology Innovation and Application, 2021(4):28-32.
[8] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2014:580-587.
[9] 南晓虎, 丁雷. 深度学习的典型目标检测算法综述[J]. 计算机应用研究, 2020(s2):15-21.
[9] Nan X H, Ding L. Overview of typical object detection algorithms based on deep learning[J]. Application Research of Computers, 2020(s2):15-21.
[10] Girshick R. Fast R-CNN[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015:1440-1448.
[11] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 url: http://ieeexplore.ieee.org/document/7485869/
[12] 罗峰. 基于超分辨率迁移学习的遥感图像车辆检测[D]. 厦门: 厦门大学, 2017.
[12] Luo F. Vehicle detection in remote sensing images based on super-resolution transfer learning[D]. Xiamen: Xiamen University, 2017.
[13] Deng Z P, Hao S, Zhou S L, et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8):3652-3664.
doi: 10.1109/JSTARS.2017.2694890 url: https://ieeexplore.ieee.org/document/7921594/
[14] Liu K, Mattyus G. Fast multiclass vehicle detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1938-1942.
doi: 10.1109/LGRS.2015.2439517 url: http://ieeexplore.ieee.org/document/7122912/
[15] 王雪, 隋立春, 李顶萌, 等. 区域卷积神经网络用于遥感影像车辆检测[J]. 公路交通科技, 2018, 35(3):103-108.
[15] Wang X, Sui L C, Li D M, et al. Regional convolutional neural network for vehicle detection in remote sensing images[J]. Journal of Electronics and Information Technology, 2018, 35(3):103-108.
[16] 高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12):2812-2819.
[16] Gao X, Li H, Zhang Y, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics and Information Technology, 2018, 40(12):2812-2819.
[17] 阳理理. 基于人工神经网络的遥感图像车辆检测[D]. 南宁: 广西大学, 2018.
[17] Yang L L. Vehicle detection based on artificial neural network in remote sensing images[D]. Nanning: Guangxi University, 2018.
[18] 孙秉义. 基于遥感图像处理的交通量检测与分析[D]. 上海: 上海交通大学, 2019.
[18] Sun B Y. Traffic volume detection and analysis based on remote sensing images processing[D]. Shanghai: Shanghai Jiaotong University, 2019.
[19] Xia G S, Bai X, Ding J, et al. DOTA:A large-scale dataset for object detection in aerial images[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2018:3974-3983.
[20] 黄国捷. 基于深度学习的遥感图像车辆目标检测[D]. 苏州: 苏州大学, 2019.
[20] Huang G J. Vehicle target detection from remote sensing images based on deep learning[D]. Suzhou: Soochow University, 2019.
[21] Ji H, Gao Z, Mei T, et al. Improved Faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11):1761-1765.
doi: 10.1109/LGRS.2019.2909541 url: https://ieeexplore.ieee.org/document/8694857/
[22] Rottensteiner F, Sohn G, Jung J, et al. The ISPRS benchmark on urban object classification and 3D building reconstruction[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012,1-3:293-298.
[23] Razakarivony S, Jurie F. Vehicle detection in aerial imagery:A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34:187-203.
doi: 10.1016/j.jvcir.2015.11.002 url: https://linkinghub.elsevier.com/retrieve/pii/S1047320315002187
[24] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 url: http://ieeexplore.ieee.org/document/7478072/
[25] 梁哲恒, 黎宵, 邓鹏, 等. 融和多尺度特征注意力的融合遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5):668-676.
[25] Liang Z H, Li X, Deng P, et al. Remote sensing images change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):668-676.
[26] Yang X, Sun H, Sun X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6:50839-50849.
doi: 10.1109/ACCESS.2018.2869884 url: https://ieeexplore.ieee.org/document/8464244/
[27] Fu Y, Wu F, Zhao J. Context-Aware and depth wise-based detection on orbit for remote sensing image[C]// 2018 24th International Conference on Pattern Recognition(ICPR).IEEE, 2018:1725-1730.
[28] Li Q, Mou L, Xu Q, et al. R3-Net:A deep network for multioriented vehicle detection in aerial images and videos[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):5028-5042.
doi: 10.1109/TGRS.2019.2895362 url: https://ieeexplore.ieee.org/document/8651485/
[29] Zhang Z H, Guo W W, Zhu S N, et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1745-1749.
doi: 10.1109/LGRS.2018.2856921 url: https://ieeexplore.ieee.org/document/8438330/
[30] 林钊. 基于深度学习的遥感图像舰船目标检测与识别[D]. 长沙: 国防科技大学, 2018.
[30] Lin Z. Ship detection and recognition in remote sensing images based on deep learning[D]. Changsha: National University of Defense Technology, 2018.
[31] 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
doi: 10.6046/zrzyyg.2020372
[31] Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
doi: 10.6046/zrzyyg.2020372
[32] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8):10-25.
doi: 10.3778/j.issn.1002-8331.2012-0449
[32] Xu D G, Wang L, Li F. A review of typical object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2021, 57(8):10-25.
[33] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2016:779-788.
[34] Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2017:6517-6525.
[35] Redmon J, Farhadi A. YOLOv3:An incremental improvement[EB/OL].(2019-12-25)[2021-12-29]. https://arxiv.org/abs/1804.02767 .
url: https://arxiv.org/abs/1804.02767
[36] Bochkovskiy A, Wang C Y, Liao H. YOLOv4:Optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2021-12/29]. https://arxiv.org/abs/2004.10934 .
url: https://arxiv.org/abs/2004.10934
[37] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[J]. Springer,Cham, 2016, 9905:21-37.
[38] Fu C, Liu W, Ranga A, et al. DSSD:Deconvolutional single shot detector[EB/OL].(2017-01-23)[2021-12/29]. https://arxiv.org/abs/1701.06659v1 .
url: https://arxiv.org/abs/1701.06659v1
[39] Tian Z, Shen C H, Chen H, et al. FCOS:Fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE, 2020:9626-9635.
[40] 李圣琀, 邵峰晶. 基于深度学习的轻量遥感图像车辆检测模型[J]. 工业控制计算机, 2020, 33(6):66-69.
[40] Li S H, Shao F J. Vehicle detection model of light weight remote sensing image based on deep learning[J]. Industrial Control Computer, 2020, 33(6):66-69.
[41] Etten A V. You only look twice:Rapid multi-scale object detection in satellite imagery[EB/OL].(2018-05-24)[2021-12-29]. https://arxiv.org/abs/1805.09512 .
url: https://arxiv.org/abs/1805.09512
[42] 彭新月, 张吴明, 钟若飞. 改进YOLOv3模型的GF-2卫星影像车辆检测[J]. 测绘科学, 2021, 46(12):147-154.
[42] Peng X Y, Zhang W M, Zhong R F. GF-2 satellite image vehicle detection based on improved YOLOv3 model[J]. Science of Surveying and Mapping, 2021, 46(12):147-154.
[43] 汤田玉. 基于深度学习的高分辨率光学遥感影像车辆目标检测方法研究[D]. 长沙: 国防科技大学, 2017.
[43] Tang T Y. Deep convolutional neural network based vehicle detection methods on high resolution optical remote sensing images[D]. Changsha: National University of Defense Technology, 2017.
[44] 侯涛, 蒋瑜. 改进YOLOv4在遥感飞机目标检测中的应用研究[J]. 计算机工程与应用, 2021, 57(12):224-230.
doi: 10.3778/j.issn.1002-8331.2011-0248
[44] Hou T, Jiang Y. Resrarch of improved YOLOv4 in remote sensing aircraft target detection[J]. Computer Engineering and Applications, 2021, 57(12):224-230.
[45] 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4):927-937.
doi: 10.3778/j.issn.1673-9418.2108087
[45] Zhao P F, Xie L B, Peng L. A deep small target detection algorithm based on attention mechanism[J]. Computer Science and Technolo-gy, 2022, 16(4):927-937.
[46] 王明阳, 王江涛, 刘琛. 基于关键点的遥感图像旋转目标检测[J]. 电子测量与仪器学报, 2021, 35(6):102-108.
[46] Wang M Y, Wang J T, Liu C. Detection of rotating targets in remote sensing images based on key points[J]. Journal of Electronic Measurement and Instrument, 2021, 35(6):102-108.
[47] 唐建宇, 唐春晖. 基于旋转框和注意力机制的遥感图像目标检测算法[J]. 电子测量技术, 2021, 44(13):114-120.
[47] Tang J Y, Tang C H. Remote sensing image target detection algorithm based on rotating frame and attention mechanism[J]. Electronic Measurement Technique, 2021, 44(13):114-120.
[48] 陈俊. 基于R-YOLO的多源遥感图像海面目标融合检测算法研究[D]. 武汉: 华中科技大学, 2019.
[48] Chen J. Research on maritime target fusion detection in multi-source remote sensing images based on R-YOLO[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[49] 谢俊章, 彭辉, 唐健峰, 等. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22):247-256.
doi: 10.3778/j.issn.1002-8331.2104-0213
[49] Xie J Z, Peng H, Tang J F, et al. Improved YOLOv4 for dense remote sensing target detection[J]. Computer Engineering and Applications, 2021, 57(22):247-256.
doi: 10.3778/j.issn.1002-8331.2104-0213
[50] 杨治佩, 丁胜, 张莉, 等. 无锚点的遥感图像任意角度密集目标检测方法[J]. 计算机应用, 2022, 42(6):1965-1971.
doi: 10.11772/j.issn.1001-9081.2021060890
[50] Yang Z P, Ding S, Zhang L, et al. An arbitrary angle dense target detection method for remote sensing images without anchor points[J]. Computer Application, 2022, 42(6):1965-1971.
[51] 张宏群, 班勇苗, 郭玲玲, 等. 基于YOLOv5的遥感图像舰船的检测方法[J]. 电子测量技术, 2021, 44(8):87-92.
[51] Zhang H Q, Ban Y M, Guo L L, et al. Remote sensing images ship detection method based on YOLOv5[J]. Electronic Measurement Technology, 2021, 44(8):87-92.
[52] 张玉莲. 光学图像海面舰船目标智能检测与识别方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
[52] Zhang Y L. Research on intelligent detection and recognition metho-ds of ship targets on the sea surface in optical images[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics,Fine Mechanics and Physics,CAS), 2021.
[53] Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images:A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307.
doi: 10.1016/j.isprsjprs.2019.11.023 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271619302825
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[3] ZHANG Shibo, HU Wenmin, HAN Zhenying, LI Guo, WANG Zhongcheng, GAO Zhihai. Differences in rocky desertification information extracted from GF-6 and Landsat8 using the pixel unmixing method: A case study of Puding County[J]. Remote Sensing for Natural Resources, 2023, 35(3): 274-283.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[6] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[7] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[8] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[9] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[10] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[11] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[12] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[13] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[14] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
[15] SU Wei, LIN Yangyang, YUE Wen, CHEN Yingbiao. Identification of mariculture areas in Guangdong Province and remote sensing monitoring of their spatial and temporal changes based on the U-Net convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(4): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech