Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 10-20     DOI: 10.6046/zrzyyg.2023027
|
Research advances and challenges in multi-label classification of remote sensing images
LIN Dan1(), LI Qiucen1, CHEN Zhikui1,2(), ZHONG Fangming1,2, LI Lifang1
1. School of Software Technology, Dalian University of Technology, Dalian 116620, China
2. Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, Dalian 116620, China
Download: PDF(5870 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Multi-label classification of remote sensing images plays a fundamental role in remote sensing analysis. Parsing given remote sensing images to identify semantic labels can provide a significant technical basis for downstream computer vision tasks. With the continuously improved spatial resolution of remote sensing images, many remote sensing objects with different scales, colors, and shapes are distributed in various zones of images, posing high challenges to the multi-label classification task of remote sensing images. This study focuses on the multi-label classification of images in the field of remote sensing, summarizing and analyzing the frontier research advances in this regard. First of all, this study expounded the problem definition for the multi-label classification task of remote sensing images while generalizing the commonly used multi-label image datasets and model evaluation indicators. Furthermore, by systematically presenting the frontier progress in this field, this study delved into two key tasks in the multi-label classification of remote sensing images: feature extraction of remote sensing images and label feature extraction. Finally, based on the characteristics of remote sensing images, this study analyzed the current challenges of multi-label classification as well as subsequent research orientation.

Keywords remote sensing image      multi-label classification of remote sensing images      multi-label classification      remote sensing     
ZTFLH:  TP79  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dan LIN
Qiucen LI
Zhikui CHEN
Fangming ZHONG
Lifang LI
Cite this article:   
Dan LIN,Qiucen LI,Zhikui CHEN, et al. Research advances and challenges in multi-label classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 10-20.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023027     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/10
Fig.1  Comparison of single-label and multi-label remote sensing image
数据集 图像总数 类别数 训练数 测试数
UCM 2 100 17 1 680 420
AID 3 000 17 2 400 600
DFC15 3 342 8 2 674 668
MultiScene 100 000 36 93 000 7000
MLRSNet 109 161 46 54 581 54 580
BigEarthNet 590 326 19 415 471 103 868
Tab.1  
Fig.2  Three kinds of remote sensing image classification
Fig.3  Research development of multi-label remote sensing image classification problem
[1] 陈春芳, 边小勇, 费雄君, 等. 弱监督多示例子概念学习的遥感场景分类[J]. 小型微型计算机系统, 2022, 43(1):76-83.
[1] Chen C F, Bian X Y, Fei X J, et al. Weakly supervised multi-instance sub-concept learning for remote sensing scene classification[J]. Journal of Chinese Computer Systems, 2022, 43(1):76-83.
[2] Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images:A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307.
[3] Yuan X H, Shi J F, Gu L C. A review of deep learning methods for semantic segmentation of remote sensing imagery[J]. Expert Systems with Applications, 2021, 169:114417.
[4] 赵泽亚, 杨迪, 梁小虎, 等. 海量遥感数据的存储迁移策略研究[J]. 信息工程大学学报, 2020, 21(1):115-119.
[4] Zhao Z Y, Yang D, Liang X H, et al. Study on storage and migration strategy of massive remote sensing data[J]. Journal of Information Engineering University, 2020, 21(1):115-119.
[5] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3):114-120.doi:10.6046/zrzyyg.2020301.
[5] Bai J L, Wang Z Q, Yan H T. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3):114-120.doi:10.6046/zrzyyg.2020301.
[6] 涂兵, 张晓飞, 张国云, 等. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1):22-32.doi:10.6046/gtzyyg.2019.01.04.
[6] Tu B, Zhang X F, Zhang G Y, et al. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land and Resources, 2019, 31(1):22-32.doi:10.6046/gtzyyg.2019.01.04.
[7] Wang T, Zhang H S, Lin H, et al. Textural- spectral feature-based species classification of mangroves in Mai Po Nature Reserve from WorldView-3 imagery[J]. Remote Sensing, 2015, 8(1):24-35.
[8] Zhou W, Song Y Q, Pan Z K, et al. Classification of urban construction land with WorldView-2 remote sensing image based on classification and regression tree algorithm[C]// 2017 IEEE International Conference on Computational Science and Engineering(CSE) and IEEE International Conference on Embedded and Ubiquitous Computing(EUC), 2017:277-283.
[9] Hamidishad N, Cesar R Jr. Object-based method for identifying new constructions around water reservoirs:Preliminary results[C]// Anais Estendidos da Conference on Graphics,Patterns and Images(SIBGRAPI), 2019, 32:172-175.
[10] Yessou H, Sumbul G, Demir B. A comparative study of deep learning loss functions for multi-label remote sensing image classification[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2020:1349-1352.
[11] Chaudhuri B, Demir B, Chaudhuri S, et al. Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):1144-1158.
[12] Xia G S, Hu J W, Hu F, et al. AID:A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7),3965-3981.
[13] Hua Y, Mou L, Jin P, et al. MultiScene:A large-scale dataset and benchmark for multiscene recognition in single aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021(60):5010213.
[14] Qi X, Zhu P, Wang Y, et al. MLRSNet:A multi-label high spatial resolution remote sensing dataset for semantic scene understanding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169:337-350.
[15] Sumbul G, Charfuelan M, Demir B, et al. Bigearthnet:A large-scale benchmark archive for remote sensing image understanding[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:5901-5904.
[16] Sumbul G, Wall A D, Kreuziger T, et al. BigEarthNet-MM:A large scale multi modal multi label benchmark archive for remote sensing image classification and retrieval[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(3):174-180.
[17] Cheng G, Xie X, Han J, et al. Remote sensing image scene classification meets deep learning:Challenges,methods,benchmarks,and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756.
[18] Blaschke T, Strobl J. What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS[J]. Interfacing Remote Sensing and GIS, 2001, 6(1):12-17.
[19] Chen T, Wang Z, Li G, et al. Recurrent attentional reinforcement learning for multi-label image recognition[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1).
[20] 曾黎, 徐慧颖, 陈晓昊, 等. 深度学习在高分遥感图像场景分类中的应用[J]. 计算机工程与应用, 2021, 57(10):57-64.
doi: 10.3778/j.issn.1002-8331.2101-0427
[20] Zeng L, Xu H Y, Chen X H, et al. Application of deep learning in scene classificationof high-resolution remote sensing images[J]. Computer Engineering and Applications, 2021, 57(10):57-64.
[21] 蔡之灵, 翁谦, 叶少珍, 等. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3):80-89.doi:10.6046/gtzyyg.2020.03.11.
[21] Cai Z L, Weng Q, Ye S Z, et al. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land and Resources, 2020, 32(3):80-89.doi:10.6046/gtzyyg.2020.03.11.
[22] Zeggada A, Melgani F, Bazi Y. A deep learning approach to UAV image multilabeling[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):694-698.
[23] Shendryk I, Rist Y, Lucas R, et al. Deep learning:A new approach for multi-label scene classification in planetscope and Sentinel-2 imagery[C]// IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2018:1116-1119.
[24] Karalas K, Tsagkatakisg G, Zervakism M, et al. Land classification using remotely sensed data:Going multi-label[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54:3548-3563.
[25] Melo A, Paulheim H. Local and global feature selection for multi-label classification with binary relevance[J]. Artificial Intelligence Review, 2019, 51(1):33-60.
[26] Fdez-Díaz M, Fdez-Díaz L, Mena D, et al. Improving the ε-approximate algorithm for probabilistic classifier chains[J]. Knowledge and Information Systems, 2020, 62(7):2709-2738.
[27] Zhou C L, Yuan J S. Multi-label learning of part detectors for heavily occluded pedestrian detection[C]// Proceedings of the IEEE International Conference on Computer Vision(ICCV). 2017:3486-3495.
[28] Tsagkatakis G, Tsakalides P. Deep feature learning for hyperspectral image classification and land cover estimation[J]. Environmental Science,Mathematics, 2016, 6:435-446.
[29] Cevikalp H, Benligiray B, Gerek O N. Semi-supervised robust deep neural networks for multi-label image classification[J]. Pattern Recognition, 2020, 100:107164.
[30] Zhang T, Yan W, Li J, et al. Multiclass labeling of very high-resolution remote sensing imagery by enforcing nonlocal shared constraints in multilevel conditional random fields model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7):2854-2867.
[31] Wang C, Zhang P, Zhang Y, et al. A multi-label hyperspectral image classification method with deep learning features[C]// Proceedings of the International Conference on Internet Multimedia Computing and Service, 2016:127-131.
[32] Koda S, Zeggada A, Melgani F, et al. Spatial and structured SVM for multilabel image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5948-5960.
[33] 华远盛. 深度学习在多标签遥感影像分类中应用的研究现状[J]. 科学技术创新, 2020(1):44-45.
[33] Hua Y S. Research status of application of deep learning in multi-label remote sensing image classification[J]. Scientific and Technological Innovation, 2020(1):44-45.
[34] Hua Y, Mou L, Zhu X X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149:188-199.
doi: 10.1016/j.isprsjprs.2019.01.015 pmid: 31007387
[35] Wang X, Xiong X, Ning C. Multi-label remote sensing scene classification using multi-bag integration[J]. IEEE Access, 2019(7):120399-120410.
[36] Zhang J L, Zhang J Y, Dai T, et al. Exploring weighted dual graph regularized non-negative matrix tri-factorization based collaborative filtering framework for multi-label annotation of remote sensing images[J]. Remote Sensing, 2019, 11(8):922.
[37] Khan N, Chaudhuri U, Banerjee B, et al. Graph convolutional network for multi-label VHR remote sensing scene recognition[J]. Neurocomputing, 2019, 357:36-46.
[38] Hua Y S, Lobry S., Mou L C, et al. Learning multi-label aerial image classification under label noise:A regularization approach using word embeddings[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2020,525-528.
[39] Hao Q B, Li S T, Kang X D. Multilabel sample augmentation-based hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58:4263-4278.
[40] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification[C]// ACM Sigspatial International Conference on Advances in Geographic Information Systems. 2010:270-279.
[41] Song Z L, Zhang J Q. Image registration approach with scale-invariant feature transform algorithm and tangent-crossing-point feature[J]. Journal of Electronic Imaging, 2020, 29:023010.
[42] 姜亚楠, 张欣, 张春雷, 等. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3):36-44.doi:10.6046/zrzyyg.2020303.
[42] Jiang Y N, Zhang X, Zhang C L, et al. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3):36-44.doi:10.6046/zrzyyg.2020303.
[43] Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12).
[44] Hinton G E, Simon O, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18:1527-1554.
doi: 10.1162/neco.2006.18.7.1527 pmid: 16764513
[45] Hinton G E, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313:504-507.
doi: 10.1126/science.1127647 pmid: 16873662
[46] Fang S, Zhang K, Wang Y B, et al. Multi-label hyperspectral classification with discriminative features[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021:3233-3236.
[47] Zhang M L, Zhou Z H. ML-KNN:A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048.
[48] Wang J, Yang Y, Mao J H, et al. CNN-RNN:A unified framework for multi-label image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:2285-2294.
[49] Li Y, Song Y L, Luo J B. Improving pairwise ranking for multi-label image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:3617-3625.
[50] Yan Y F, Huang S J. Cost-effective active learning for hierarchical multi-label classification[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018:2962-2968.
[51] Li Y S, Chen R X, Zhang Y J, et al. Multi-label remote sensing image scene classification by combining a convolutional neural network and a graph neural network[J]. Remote Sensing, 2020, 12(23):4003.
[52] Aksoy A K, Ravanbakhsh M, Kreuziger T, et al. A novel uncertainty-aware collaborative learning method for remote sensing image classification under multi-label noise[J]. CoRR,vol. vol.abs/2105.05496,2021.
[53] El-Khamy S E, Al-Kabbany A, El-Bana S. MLRS-CNN-DWTPL:A new enhanced multi-label remote sensing scene classification using deep neural networks with wavelet pooling layers[C]// 2021 International Telecommunications Conference(ITC-Egypt), 2021:1-5.
[54] Ji J C, Jing W P, Chen G S, et al. Multi-label remote sensing image classification with latent semantic dependencies[J]. Remote Sensing, 2020, 12:1110.
[55] Sumbul G, Demir B. A deep multi-attention driven approach for multi-label remote sensing image classification[J]. IEEE Access, 2020, 8:95934-95946.
[56] Yang M H, Liu H, Gao L, et al. DCA-GCN:A dual-branching channel attention and graph convolution network for multi-label remote sensing image classification[J]. Journal of Applied Remote Sensing, 2021, 15:044519.
[57] Diao Y, Chen J Z, Qian Y. Multi-label remote sensing image classification with deformable convolutions and graph neural networks[C]// IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, 2020:521-524.
[58] Huang S J, Gao W, Zhou Z H. Fast multi-instance multi-label learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41:2614-2627.
[59] Zhou Z H, Zhang M L. Multi-instance multi-label learning with application to scene classification[C]// Advances in Neural Information Processing Systems, 2006:1609-1616.
[60] Mohamed D. Multi-instance multi-label with application to high resolution remote sensing images[J]. Journal of Physics:Conference Series, 2018, 18:614-623.
[61] Aksoy A K, Ravanbakhsh M, Demir B. Multi-label noise robust collaborative learning for remote sensing image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022:1-14.
[62] Aksoy A K, Ravanbakhsh M, Kreuziger T, et al. A consensual collaborative learning method for remote sensing image classification under noisy multi-labels[C]// 2021 IEEE International Conference on Image Processing(ICIP), 2021:3842-3846.
[63] Burgert T, Ravanbakhsh M, Demir B. On the effects of different types of label noise in multi-label remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5413713.
[64] Li Q, Qiao M Y, Bian W, et al. Conditional graphical lasso for multi-label image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:2977-2986.
[65] Hua Y S, Mou L C, Zhu X X. Label relation inference for multi-label aerial image classification[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2019:5244-5247.
[66] Chen J Z, Qian Y. Hierarchical multi-label ship recognition in remote sensing images using label relation graphs[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2021:4968-4971.
[67] Zhang J J, Wu Q, Shen C H, et al. Multi-label image classification with regional latent semantic dependencies[J]. IEEE Transactions on Multimedia, 2018, 20(10):2801-2813.
[68] Zhu F, Li H S, Ouyang W L, et al. Learning spatial regularization with image-level supervisions for multi-label image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2017:2027-2036.
[69] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[EB/OL]. arXiv.(2016-09-09) [2023-03-27]https://arxiv.org/abs/1609.02907.
url: https://arxiv.org/abs/1609.02907
[70] Wang Y, He D L, Li F, et al. Multi-label classification with label graph superimposing[EB/OL]. arXiv.(2019-11-21) [2023-03-27]https://arxiv.org/abs/1911.09243.
url: https://arxiv.org/abs/1911.09243
[71] Li Y S, Chen R X, Zhang Y J, et al. A CNN-GCN framework for multi-label aerial image scene classification[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2020:1353-1356.
[72] 杨敏航, 陈龙, 刘慧, 等. 基于图卷积网络的多标签遥感图像分类[J]. 计算机应用研究, 2021, 38(11):3439-3445.
[72] Yang M H, Chen L, Liu H, et al. Multi-label remote sensing image classification based on graph convolutional network[J]. Application Research of Computer, 2021, 38(11):3439-3445.
[73] Lin D, Lin J Z, Zhao L, et al. Multi-label aerial image classification with a concept attention graph neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5602112.
[74] Lin D, Lin J, Zhao L, et al. Multilabel aerial image classification with unsupervised domain adaptation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5609613.
[1] HE Haixia, LI Bo. Characteristics and risk analysis of the flash flood occurring in Datong of Qinghai Province on August 18, 2022[J]. Remote Sensing for Natural Resources, 2024, 36(2): 135-141.
[2] LIU Jiafeng, ZHANG Wenkai, DU Xiaomin, JI Xinyang, YANG Jinzhong, FAN Jinghui, SUN Xiyong, TONG Jing. Evolutionary process and inundation risk identification of water bodies in the beach area of the Yellow River estuary from 1976 to 2020[J]. Remote Sensing for Natural Resources, 2024, 36(2): 151-159.
[3] SONG Qi, GAO Xiaohong, SONG Yuting, LI Qiaoli, CHEN Zhen, LI Runxiang, ZHANG Hao, CAI Sangjie. Estimation of soil organic carbon content in farmland based on UAV hyperspectral images: A case study of farmland in the Huangshui River basin[J]. Remote Sensing for Natural Resources, 2024, 36(2): 160-172.
[4] GAO Sheng, CHEN Fulong, SHI Pilong, ZHOU Wei, ZHU Meng, LUO Yansong, YANG Qingxia, WANG Qin. Fine-scale remote sensing monitoring and interpretation of large-scene vegetation health in the Jiuzhai Valley biosphere reserve: A case study of the Changhai pilot zone[J]. Remote Sensing for Natural Resources, 2024, 36(2): 188-197.
[5] XING Yu, WANG Jingya, YANG Jinzhong, CHEN Dong, DU Xiaomin, GUO Jingkai, SONG Licong. Distributions and existing problems of mining land of abandoned open-pit mines in China[J]. Remote Sensing for Natural Resources, 2024, 36(2): 21-26.
[6] LI Weiyang, SHI Haijing, NIE Weiting, YANG Xinyuan. Analyzing the spatio-temporal evolution of surface temperatures in the Yanhe River basin based on the changes in surface parameters[J]. Remote Sensing for Natural Resources, 2024, 36(2): 229-238.
[7] MA Xiaoxue, JIAO Runcheng, CAO Ying, NAN Yun, WANG Shengyu, GUO Xuefei, ZHAO Danning, YAN Chi, NI Xuan. Application of integrated remote sensing monitoring technology for geological hazards in major engineering construction:A case study of the Yanqing competition area of the Beijing 2022 Olympic Winter Games[J]. Remote Sensing for Natural Resources, 2024, 36(2): 248-256.
[8] SONG Shuangshuang, XIAO Kaifei, LIU Zhaohua, ZENG Zhaoliang. A YOLOv5-based target detection method using high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
[9] ZHAO Binru, NIU Siwen, WANG Liyan, YANG Xiaotong, JIAO Hongbo, WANG Zike. An intelligent color enhancement method for high-resolution remote sensing images of the coastal zone of an island[J]. Remote Sensing for Natural Resources, 2024, 36(2): 70-79.
[10] ZHAO Heting, LI Xiaojun, XU Xinyu, GAI Junfei. An ICM-based adaptive pansharpening algorithm for hyperspectral images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 97-104.
[11] JIANG Ruirui, GAN Fuping, GUO Yi, YAN Bokun. Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 1-13.
[12] LIU Xiaoliang, WANG Zhihua, XING Jianghe, ZHOU Rui, YANG Xiaomei, LIU Yueming, ZHANG Junyao, MENG Dan. Identifying and monitoring tailings ponds by integrating multi-source geographic data and high-resolution remote sensing images: A case study of Gejiu City, Yunnan Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 103-109.
[13] CAI Jian’ao, MING Dongping, ZHAO Wenyi, LING Xiao, ZHANG Yu, ZHANG Xingxing. Integrated remote sensing-based hazard identification and disaster-causing mechanisms of landslides in Zayu County[J]. Remote Sensing for Natural Resources, 2024, 36(1): 128-136.
[14] SONG Yingxu, ZOU Yujia, YE Runqing, HE Zhixia, WANG Ningtao. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024, 36(1): 154-161.
[15] LU Yanling, HUANG Yaqi, ZHOU Junfen, WANG Jie, WEI Jingshan. Analyzing multidimensional rural poverty alleviation at the county level in Guangxi based on remote sensing data of nighttime light[J]. Remote Sensing for Natural Resources, 2024, 36(1): 169-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech