|
|
|
|
|
|
Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine |
SONG Yingxu1,2( ), ZOU Yujia2, YE Runqing3, HE Zhixia1, WANG Ningtao3( ) |
1. Jiangxi Province Earthquake Prevention and Disaster Mitigation and Engineering Geological Hazard Detection Engineering Research Center (East China University of Science and Technology), Jiangxi Seismological Bureau, Nanchang 330013, China 2. School of Information Engineering, East China University of Technology, Nanchang 330013, China 3. Wuhan Geological Survey, China Geological Survey Center (Central South Geological Science and Technology Innovation Center), Wuhan 430205, China |
|
|
Abstract Conventional remote sensing monitoring techniques, constrained by data availability and computational capacity, often fall short of the research requirements of extensive landslide disaster monitoring. This study established a dynamic assessment model for landslide hazards in the Three Gorges Reservoir area based on cloud computing platform Google Earth Engine (GEE), achieving dynamic assessment of landslide hazards in the area under the support of the massive data storage and robust computational capabilities of GEE. First, based on factors such as slope, slope aspect, normalized difference vegetation index (NDVI), normalized differential water index (NDWI), and geological structures, a landslide susceptibility zone map was established using a weighted gradient boosting decision tree (WGBDT) model. Then, the rainfall threshold inducing landslides in the Three Gorges Reservoir area was determined based on the Global Precipitation Measurement (GPM) data from the National Aeronautics and Space Administration (NASA). Subsequently, the rainfall classification criteria and a landslide hazard assessment model were established by combining rainfall and landslide susceptibility. Finally, focusing on the rainfall on August 31 in the Three Gorges Reservoir area, the daily distribution maps of landslide hazards in the Three Gorges Reservoir area were plotted, yielding the spatio-temporal variation trend of landslide hazards. In sum, the data processing and analysis tools of GEE allow for the analysis of landslide-related data of the Three Gorges Reservoir area, thus providing nearly real-time monitoring and early warning information for landslide hazards and offering a basis for the formulation of disaster prevention and mitigation policies.
|
Keywords
remote sensing
landslide
rainfall
Google Earth Engine (GEE)
Three Gorges Reservoir area
|
|
Issue Date: 13 March 2024
|
|
|
[1] |
黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454.
|
[1] |
Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454.
|
[2] |
唐扬, 殷坤龙, 夏辉. 前期含水率对浅层滑坡降雨入渗及稳定性影响研究[J]. 地质科技情报, 2017, 36(5):204-208,237.
|
[2] |
Tang Y, Yin K L, Xia H. Effects of initial water content on the rainfall infiltration and stability of shallow landslide[J]. Geological Science and Technology Information, 2017, 36(5):204-208,237.
|
[3] |
彭令. 三峡库区滑坡灾害风险评估研究[D]. 武汉: 中国地质大学(武汉), 2013.
|
[3] |
Peng L. Landslide disaster risk assessment in the Three Gorges reservoir area[D]. Wuhan: China University of Geosciences (Wuhan), 2013.
|
[4] |
赵鹏, 杨沛霖, 蒋莉, 等. 渝东北地区强降雨诱发地质灾害险情分析[J]. 长江科学院院报, 2017, 34(10):50-56.
doi: 10.11988/ckyyb.20160309
|
[4] |
Zhao P, Yang P L, Jiang L, et al. Situation of geologic hazards induced by heavy rainfall in northeast Chongqing[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(10):50-56.
|
[5] |
刘志中, 宋英旭, 叶润青. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析[J]. 自然资源遥感, 2021, 33(4):192-199.doi:10.6046/zrzyyg.2020348.
|
[5] |
Liu Z Z, Song Y X, Ye R Q. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31,2014 based on interpretation of remote sensing images[J]. Remote Sensing of Natural Resources, 2021, 33(4): 192-199.doi:10.6046/zrzyyg.2020348.
|
[6] |
Liu J P, Mason P J, Clerici N, et al. Landslide hazard assessment in the Three Gorges area of the Yangtze River using ASTER imagery[C]// IGARSS 2003.2003 IEEE International Geoscience and Remote Sensing Symposium.Proceedings.Toulouse,France.IEEE, 2004:1302-1304.
|
[7] |
Fourniadis I G, Liu J G, Mason P J. Regional assessment of landslide impact in the Three Gorges area,China,using ASTER data:Wushan-Zigui[J]. Landslides, 2007, 4(3):267-278.
doi: 10.1007/s10346-007-0080-5
url: http://link.springer.com/10.1007/s10346-007-0080-5
|
[8] |
Hong Y, Adler R, Huffman G. Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment[J]. Geophysical Research Letters, 2006, 33(22):L22402.
|
[9] |
Hong Y, Adler R, Huffman G. Use of satellite remote sensing data in the mapping of global landslide susceptibility[J]. Natural Hazards, 2007, 43(2):245-256.
doi: 10.1007/s11069-006-9104-z
url: http://link.springer.com/10.1007/s11069-006-9104-z
|
[10] |
Kirschbaum D B, Adler R, Hong Y, et al. A global landslide catalog for hazard applications:Method,results,and limitations[J]. Natural Hazards, 2010, 52(3):561-575.
doi: 10.1007/s11069-009-9401-4
url: http://link.springer.com/10.1007/s11069-009-9401-4
|
[11] |
Kirschbaum D, Stanley T. Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness[J]. Earth’s Future, 2018, 6(3):505-523.
doi: 10.1002/eft2.v6.3
url: https://agupubs.onlinelibrary.wiley.com/toc/23284277/6/3
|
[12] |
Nadim F, Kjekstad O. Assessment of global high-risk landslide disaster hotspots[M]//Landslides-Disaster Risk Reduction.Berlin: Springer Berlin Heidelberg, 2009:213-221.
|
[13] |
Farahmand A, Aghakouchak A. A satellite-based global landslide model[J]. Natural Hazards and Earth System Sciences, 2013, 13(5):1259-1267.
|
[14] |
Liao Z, Hong Y, Kirschbaum D, et al. Assessment of shallow landslides from Hurricane Mitch in central America using a physically based model[J]. Environmental Earth Sciences, 2012, 66(6):1697-1705.
doi: 10.1007/s12665-011-0997-9
url: http://link.springer.com/10.1007/s12665-011-0997-9
|
[15] |
Kirschbaum D B, Stanley T, Simmons J. A dynamic landslide hazard assessment system for Central America and Hispaniola[J]. Natural Hazards and Earth System Sciences, 2015, 15(10):2257-2272.
|
[16] |
Chen W, Chen Y, Tsangaratos P, et al. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments[J]. Remote Sensing, 2020, 12(23):3854.
doi: 10.3390/rs12233854
url: https://www.mdpi.com/2072-4292/12/23/3854
|
[17] |
Tamiminia H, Salehi B, Mahdianpari M, et al. Google Earth Engine for geo-big data applications:A meta-analysis and systematic review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:152-170.
doi: 10.1016/j.isprsjprs.2020.04.001
url: https://linkinghub.elsevier.com/retrieve/pii/S0924271620300927
|
[18] |
Amani M, Ghorbanian A, Ali Ahmadi S, et al. Google earth engine cloud computing platform for remote sensing big data applications:A comprehensive review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:5326-5350.
doi: 10.1109/JSTARS.4609443
url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
|
[19] |
王玲玉, 陈全, 吴跃, 等. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3):23-31.doi: 10.6046/gtzyyg.2020.03.04.
|
[19] |
Wang L Y, Chen Q, Wu Y, et al. Accurate recognition and extraction of Karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land and Resources, 2020, 32(3):23-31.doi: 10.6046/gtzyyg.2020.03.04.
|
[20] |
王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2):219-225.doi:10.6046/gtzyyg.2020.02.28.
|
[20] |
Wang B Q, Han W Q, Xu C. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land and Resources, 2020, 32(2):219-225.doi:10.6046/gtzyyg.2020.02.28.
|
[21] |
徐嘉昕, 房世波, 张廷斌, 等. 2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应[J]. 国土资源遥感, 2020, 32(1):237-246.doi:10.6046/gtzyyg.2020.01.32.
|
[21] |
Xu J X, Fang S B, Zhang T B, et al. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000-2016[J]. Remote Sensing for Land and Resources, 2020, 32(1):237-246.doi:10.6046/gtzyyg.2020.01.32.
|
[22] |
王琳, 谢洪波, 文广超, 等. 基于Landsat8的含蓝藻湖泊水体信息提取方法研究[J]. 国土资源遥感, 2020, 32(4):130-136.doi:10.6046/gtzyyg.2019351.
|
[22] |
Wang L, Xie H B, Wen G C, et al. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land and Resources, 2020, 32(4):130-136.doi:10.6046/gtzyyg.2019351.
|
[23] |
王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3):157-165.doi:10.6046/gtzyyg.2019.03.20.
|
[23] |
Wang D Z, Wang S M, Huang C. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land and Resources, 2019, 31(3):157-165.doi:10.6046/gtzyyg.2019.03.20.
|
[24] |
童立强, 郭兆成. 典型滑坡遥感影像特征研究[J]. 国土资源遥感, 2013, 25(1):86-92.doi:10.6046/gtzyyg.2013.01.16.
|
[24] |
Tong L Q, Guo Z C. A study of remote sensing image features of typical landslides[J]. Remote Sensing for Land and Resources, 2013, 25(1):86-92.doi:10.6046/gtzyyg.2013.01.16.
|
[25] |
杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
|
[25] |
Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
|
[26] |
蒋培荡. 遥感技术在江西永丰县地质灾害调查中的应用[J]. 中国地质灾害与防治学报, 2015, 26(1):82-86,107.
|
[26] |
Jiang P D. Remote sensing technology investigation of geological disasters in Yongfeng County Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1):82-86, 107.
|
[27] |
金鼎坚, 支晓栋, 王建超, 等. 面向地质灾害调查的无人机遥感影像处理软件比较[J]. 国土资源遥感, 2016, 28(1):183-189.doi:10.6046/gtzyyg.2016.01.27.
|
[27] |
Jin D J, Zhi X D, Wang J C, et al. Comparison of UAV remote sensing image processing software for geological disasters monitoring[J]. Remote Sensing for Land and Resources, 2016, 28(1):183-189.doi:10.6046/gtzyyg.2016.01.27.
|
[28] |
赵银鑫, 金正鑫, 马玉学. 遥感调查应用于地质灾害调查的工作方法与技术要求——以宁夏盐池县地质灾害调查为例[J]. 宁夏工程技术, 2014, 13(3):196-200.
|
[28] |
Zhao Y X, Jin Z X, Ma Y X. Remote sensing investigation in geological disasters investigation method and technique requirements-a case study of geological disasters investigation in Yanchi County of Ningxia[J]. Ningxia Engineering Technology, 2014, 13(3):196-200.
|
[29] |
徐潇宇. 三峡库区地质灾害防治系统运行机制研究[D]. 中国地质大学, 2013.
|
[29] |
Xu X Y. Research on the operation mechanism of the system dealing with the prevention and control of geological hazards in three gorges reservoir area[D]. Wuhan: China University of Geosciences, 2013.
|
[30] |
Zhang H, Song Y, Xu S, et al. Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping:A case study of Wanzhou section of the Three Gorges Reservoir,China[J]. Computers & Geosciences, 2022, 158:104966.
doi: 10.1016/j.cageo.2021.104966
url: https://linkinghub.elsevier.com/retrieve/pii/S0098300421002521
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|