Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 63-71    DOI: 10.6046/zrzyyg.2021207
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于卫星影像的输电杆塔坐标校准方法
马御棠1(), 潘浩1, 周仿荣1, 黄然1, 赵加能1, 罗继强2, 刘靖2,3, 孙浩轩4(), 贾伟洁5, 张涛6
1.云南电网有限责任公司电力科学研究院电力遥感技术联合实验室,昆明 650217
2.北京空间飞行器总体设计部,北京 100094
3.华南理工大学计算机学院,广州 510006
4.武汉大学遥感信息工程学院,武汉 430079
5.中国自然资源航空物探遥感中心, 北京 100083
6.军委装备发展部装备采购服务中心,北京 100009
Method to calibrate the coordinates of transmission towers based on satellite images
MA Yutang1(), PAN Hao1, ZHOU Fangrong1, HUANG Ran1, ZHAO Jianeng1, LUO Jiqiang2, LIU Jing2,3, SUN Haoxuan4(), JIA Weijie5, ZHANG Tao6
1. Joint Laboratory of Power Remote Sensing Technology, Electric Power Research Institute, Yunnan Power Grid Company Ltd., Kunming 650217, China
2. China Academy of Space Technology Institute of Spacecraft System Engineering, Beijing 100094, China
3. School of Computer Science & Engineering, South China University of Technology, Guangzhou 510006, China
4. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
5. China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083, China
6. Equipment Procurement Service Center of China’s Central Military Commission (CMC) Equipment Development Department (EDD), Beijing 100009, China
全文: PDF(4996 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为实现输电线路精细化巡线管理,提高其运维效率,实现卫星智能巡检,精准查找杆塔及输电线路的缺陷及隐患,以云南省昆明市输电线路杆塔坐标为例,提出利用卫星影像进行输电杆塔坐标校准的方法。首先以参考底图数据为基准匹配控制点,并利用数字高程模型(digital elevation model,DEM)对原始遥感影像进行几何纠正; 然后结合阴影检测、边缘检测等技术与目视判读,得到校准的杆塔坐标。实验检验了昆明地区高景一号和高分二号卫星影像的几何纠正精度,纠正后平面中误差分别为0.931 m和1.387 m; 此外,实验检验了2条线路上的旧杆塔台账坐标校准精度,结果表明,杆塔台账的平面精度由13.811 m和8.256 m分别提升至5.970 m和5.104 m,满足基本的电网需求。该方法可以实现杆塔坐标的校准,减小人工巡检的工作量,提高巡线效率。随着遥感影像的数据量级爆发式增长,空天地多源影像将不断结合,基于卫星遥感影像的输电线路杆塔定位技术将有更加广阔的发展前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马御棠
潘浩
周仿荣
黄然
赵加能
罗继强
刘靖
孙浩轩
贾伟洁
张涛
关键词 输电杆塔几何纠正坐标校准DEM遥感    
Abstract

In order to realize the refined line inspection management of transmission lines, improve its operation and maintenance efficiency, realize satellite intelligent inspection, and accurately find the defects and hidden dangers of towers and transmission lines, the paper took the coordinates of transmission line towers in Kunming City, Yunnan Province as an example and proposed a method to calibrate the coordinates of transmission towers using satellite images. The method first uses the reference base-map data as the basis to match the control points and uses the digital elevation model (DEM) to perform geometric correction on the original remote sensing image. Then combined with such technologies as shadow detection and edge detection and visual interpretation, the calibrated tower coordinates are obtained. The experiment verified the geometric correction accuracy of the SuperView-1 (SV1) and Gaofen-2(GF2) satellite images in the Kunming area, and the errors in the plane after correction were 0.931 and 1.387 m, respectively. In addition, the experiment verified the calibration accuracy of the old tower coordinates on the two lines. The results show that the plane accuracy of the tower has increased from 13.811 m and 8.256 m to 5.970 m and 5.104 m, respectively, which meets the basic power grid requirements. This method can realize the calibration of the tower coordinates, reduce the workload of manual inspection, and improve the efficiency of line inspection. With the explosive growth of remote sensing image data, multi-source images from the space and ground will continue to be combined, and the technology for the positioning of transmission towers based on satellite remote sensing images will have a broader development prospect.

Key wordstransmission tower    geometric correction    calibration ofcoordinates    DEM    remote sensing
收稿日期: 2021-07-06      出版日期: 2022-06-20
ZTFLH:  TP79  
基金资助:高分辨率对地观测系统重大专项(GFZX0404130302);云南科技项目“基于卫星技术的电网‘天空地协同’巡视及风险防控策略研究与示范应用”(编号: YNKJXM20180016(YNKJXM20180016)
通讯作者: 孙浩轩
作者简介: 马御堂(1986-),男,硕士,研究方向为防雷与接地技术。Email: 1277396850@qq.com
引用本文:   
马御棠, 潘浩, 周仿荣, 黄然, 赵加能, 罗继强, 刘靖, 孙浩轩, 贾伟洁, 张涛. 基于卫星影像的输电杆塔坐标校准方法[J]. 自然资源遥感, 2022, 34(2): 63-71.
MA Yutang, PAN Hao, ZHOU Fangrong, HUANG Ran, ZHAO Jianeng, LUO Jiqiang, LIU Jing, SUN Haoxuan, JIA Weijie, ZHANG Tao. Method to calibrate the coordinates of transmission towers based on satellite images. Remote Sensing for Natural Resources, 2022, 34(2): 63-71.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021207      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/63
Fig.1  参考底图几何纠正流程图

SV-1 GF-2
影像类型 分辨
率/m
获取日期 影像类型 分辨
率/m
获取日期
1 SV1-02多光谱 2 2018.11.14 GF-2多光谱 4 2019.01.23
2 SV1-02全色 0.5 2018.11.14 GF-2全色 1 2019.01.23
3 SV1-03多光谱 2 2018.01.16 GF-2多光谱 4 2019.10.31
4 SV1-03全色 0.5 2018.01.16 GF-2全色 1 2019.10.31
Tab.1  实验数据说明
Fig.2  实验影像数据与底图位置关系
Fig.3  参考底图与实验影像位置关系细节图
影像名 匹配
点/
控制
点/
检查点像方
精度/像元
检查点物方精度/m
x y 平面 x y 平面
SV-1-03-
20180116
58 10 1.196 1.179 1.679 0.660 0.626 0.910
SV-1-02-
20181114
58 10 1.205 1.230 1.722 0.615 0.725 0.951
GF2-
20190123
50 10 1.011 1.115 1.505 0.885 0.819 1.206
GF2-
20191031
110 10 1.550 1.237 1.983 1.208 0.998 1.567
Tab.2  实验影像与参考底图校准精度
Fig.4-1  参考底图与纠正后实验影像接边关系细节图
Fig.4-2  参考底图与纠正后实验影像接边关系细节图
Fig.5  杆塔识别辅助人工判读示意图
类型 区域1 区域2
x误差 y误差 平面中
误差
x误差 y误差 平面中
误差
旧杆塔台账偏差 5.010 5.744 13.811 6.157 3.502 8.256
校准后杆塔坐标偏差 3.328 2.725 5.970 3.795 3.414 5.104
Tab.3  杆塔校点精度
[1] 彭向阳, 钱金菊, 麦晓明, 等. 大型无人直升机电力线路全自动巡检技术及应用[J]. 南方电网技术, 2016, 10(2):24-31.
Peng X Y, Qian J J, Mai X M, et al. Automatic power line inspection technology of large unmanned helicopter and its application[J]. Southern Power System Technology, 2016, 10(2):24-31.
[2] 许敏, 宋宁宁, 刘秀娟. 影响雷电定位系统故障查询的原因分析[J]. 山西电力, 2008, 148(4):29-30.
Xu M, Song N N, Liu X J. Cause analysis of factors affect lightning location system fault inquire[J]. Shanxi Electric Power, 2008, 148(4):29-30.
[3] 陈家宏, 张勤, 冯万兴, 等. 中国电网雷电定位系统与雷电监测网[J]. 高电压技术, 2008, 34(3):425-431.
Chen J H, Zhang Q, Feng W X, et al. Lightning location system and lightning detection network of China power grid[J]. High Voltage Engineering, 2008, 34(3):425-431.
[4] 于旭宅. 基于LiDAR数据的输电线路通道危险区域提取方法研究[D]. 北京: 北京林业大学, 2018.
Wang X Z. Study on the dangerous area extraction of transmission line passage based on LiDAR data[D]. Beijing: Beijing Forestry University, 2018.
[5] 李伟性, 李兴, 冯家荣, 等. 探讨基于大地坐标系求解输电线路杆塔坐标的方法[J]. 广西电力, 2007(4):75-78.
Li W X, Li X, Feng J R, et al. Discuss on method to solve problem of pole or tower coordinates of power transmission line based on earth coordinate system[J]. Guangxi Electric Power, 2007(4):75-78.
[6] 高成发. GPS事后相位差分坐标解算模型及其相关问题的研究[J]. 测绘学报, 2006, 35(2):148.
Gao C F. Research on coordinate solution model of GPS post difference and correlated problems[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(2):148.
[7] 杜双育, 杨强, 黄勇, 等. 输电线路杆塔坐标校验研究及应用[J]. 广东电力, 2014, 27(12):102-107.
Du S Y, Yang Q, Huang Y, et al. Research and application of check on power transmission tower coordinate[J]. Guangdong Electric Power, 2014, 27(12):102-107.
[8] 翁永玲, 范兴旺, 胡伍生, 等. 多源遥感数据及GIS技术在输电线路径优选中的应用研究[J]. 东南大学学报(自然科学版), 2013(s2):269-274.
Weng Y L, Fan X W, Hu W S, et al. Application of multisensor image and GIS in electric transmission line path design[J]. Journal of Southeast University (Natural Science Edition), 2013(s2):269-274.
[9] 吕雅婧, 滕玲, 邢亚, 等. 北斗卫星导航系统在电力行业的应用现状[J]. 电力信息与通信技术, 2019, 17(8):70-74.
Lu Y J, Teng L, Xing Y, et al. Application status of Beidou satellite navigation system in power industry[J]. Electric Power Information and Communication Technology, 2019, 17(8):70-74.
[10] 穆晓辰, 周学坤, 王常欣, 等. 基于北斗及GPS双系统的电力杆塔滑移监测系统研究[J]. 电力信息与通信技术, 2019, 17(6):44-50.
Mu X C, Zhou X K, Wang C X, et al. Research on power tower slip monitoring system based on Beidou and GPS dual system[J]. Electric Power Information and Communication Technology, 2019, 17(6):44-50.
[11] 宋军, 赵凡, 严天峰, 等. 高精度GPS形变系统在电力杆塔监测中的应用[J]. 自动化与仪器仪表, 2014(8):63-65.
Song J, Zhao F, Yan T F, et al. The application of high-precision GPS deformation monitoring system on monitor of power tower[J]. Automation & Instrumentation, 2014(8):63-65.
[12] Liang X, Hyyppa J, Kukko A, et al. The use of a mobile laser scanning system for mapping large forest plots[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(9):1504-1508.
[13] 刘洋. 机载点云电力走廊要素提取及风险计算[D]. 武汉: 武汉大学, 2018.
Liu Y. Feature extraction and inspection of transmission corridor based on ALS data[D]. Wuhan: Wuhan University, 2018.
[14] 张勇. 架空输电线路障碍物巡检的无人机低空摄影测量方法研究[D]. 武汉: 武汉大学, 2017.
Zhang Y. Inspection of overhead power line corridor obstacles by UAV photogrammetry[D]. Wuhan: Wuhan University, 2017.
[15] 张帆, 黄先锋, 屈孝志, 等. 基于竖直基线摄影测量的电力线测量方法[J]. 测绘通报, 2013(11):33-36.
Zhang F, Huang X F, Qu X Z, et al. Power line measurement method based on vertical baseline photogrammetry[J]. Bulletin of Surveying and Mapping, 2013(11):33-36.
[16] 屈航. 基于双目系统的电力线与地物间距离的测量[D]. 重庆: 重庆交通大学, 2013.
Qu H. Distance surveying between power lines and features based on binocular system[D]. Chongqing: Chongqing Jiaotong University, 2013.
[17] 骆洁艺. Google Earth在输电线路防雷中的应用[J]. 广东电力, 2010, 23(12):92-96.
Luo J Y. Application of Google Earth in lightning protection of transmission lines[J]. Guangdong Electric Power, 2010, 23(12):92-96.
[18] 马御棠, 王磊, 马仪, 等. 利用Google Earth对线路杆塔坐标校正[J]. 南方电网技术, 2013(1):72-75.
Ma Y T, Wang L, Ma Y, et al. The correction with Google Earth for tower coordinate of transmission line[J]. Southern Power System Technology, 2013(1):72-75.
[19] 唐东跃, 熊助国, 王金丽. Google Earth及其应用展望[J]. 地理空间信息, 2008, 6(4):110-113.
Tang D Y, Xiong Z G, Wang J L. Application and outlook of Google Earth[J]. Geospatial Information, 2008, 6(4):110-113.
[20] 马御棠, 王磊, 马仪, 等. 雷电定位系统线路杆塔坐标校准方法[J]. 中国电力, 2012, 45(6):18-21.
Ma Y T, Wang L, Ma Y, et al. Calibration method of transmission tower coordinates in lightning location system[J]. Electric Power, 2012, 45(6):18-21.
[21] 魏鑫. 电力勘测中卫星遥感影像技术的应用[J]. 低碳世界, 2018(1):58-59.
Wei X. Application of satellite remote sensing image technology in electric power survey[J]. Low Carbon World, 2018(1):58-59.
[22] 朱志超. 关于电力勘测中卫星遥感影像技术的应用研究[J]. 通讯世界, 2018(6):172-173.
Zhu Z C. Research on the application of satellite remote sensing image technology in power survey[J]. Telecom World, 2018(6):172-173.
[23] 赖余斌, 袁太平, 洪巧章, 等. 基于卫星遥感技术的电网建设全过程动态监控技术研究[J]. 绿色科技, 2018(24):187-190.
Lai Y B, Yuan T P, Hong Q Z, et al. Dynamic monitoring of power grid construction process based on satellite remote sensing technology[J]. Journal of Green Science and Technology, 2018(24):187-190.
[24] 晏杨, 谢宝蓉, 李欣, 等. 基于RPC模型的星上遥感卫星影像快速正射纠正[J]. 上海航天, 2018, 35(1):110-116.
Yan Y, Xie B R, Li X, et al. Fast ortho rectification of remote sensing satellite images based on RPC model[J]. Aerospace Shanghai, 2018, 35(1):110-116.
[25] 刘楚斌, 张永生, 范大昭, 等. 高分辨率三线阵卫星遥感影像的区域网平差算法与实验[J]. 测绘科学技术学报, 2015, 32(5):489-493.
Liu C B, Zhang Y S, Fan D Z, et al. Block-adjustment algorithm and test for three-line-array image of high-resolution remote sensing satellite[J]. Journal of Geomatics Science and Technology, 2015, 32(5):489-493.
[26] 杨国东, 赵强, 张旭晴, 等. 基于SPOT6卫星遥感数据无控制点正射校正[J]. 测绘与空间地理信息, 2018, 41(7):1-3.
Yang G D, Zhao Q, Zhang X Q, et al. Based on SPOT6 satellite remote sensing data without control point orthorectification[J]. Geomatics & Spatial Information Technology, 2018, 41(7):1-3.
[27] 王超, 吴亚文, 张伟. 基于有理函数模型的北京二号影像几何校正[J]. 中国资源综合利用, 2019, 37(1):162-165.
Wang C, Wu Y W, Zhang W. Geometric correction of based on Beijing-Ⅱ image with rational function model[J]. China Resources Comprehensive Utilization, 2019, 37(1):162-165.
[28] 张过. 缺少控制点的高分辨率卫星遥感影像几何纠正[D]. 武汉: 武汉大学, 2005.
Zhang G. Rectification for high resolution remote sensing image under lack of ground control points[D]. Wuhan: Wuhan University, 2005.
[29] Rufenacht D, Fredembach C, Susstrunk S. Automatic and accurate shadow detection using near-infrared information[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 36(8):1672-1678.
[30] Beylkin G. Discrete radon transform[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1987, 35(2):162-172.
[31] 耿婵. 控制点布设对高分二号影像精度影响研究[J]. 测绘与空间地理信息, 2020, 43(6):144-147.
Gen C. Research on influence of control points laying on precision of GF-2 image[J]. Geomatics & Spatial Information Technology. 2020, 43(6):144-147.
[32] 汪建峰, 方青. 高景一号卫星影像测绘能力分析[J]. 测绘技术装备, 2020, 22(2):10-14.
Wang J F, Fang Q. Mapping capability analysis of SuperView-1 satellite image[J]. Geomatics Technology and Equipment, 2020, 22(2):10-14.
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[3] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[4] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[5] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[6] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[7] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[8] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[9] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[10] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[11] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[12] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[13] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[14] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[15] 朱博勤, 严召进, 谢晶, 刘宏, 宋小庆, 向喜琼. FAST型大射电望远镜选址洼地地形搜寻关键技术研究[J]. 自然资源遥感, 2023, 35(2): 80-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发