Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (2): 11-18    DOI: 10.6046/gtzyyg.2014.02.03
  综述 本期目录 | 过刊浏览 | 高级检索 |
森林湿地遥感信息提取方法研究现状
严婷婷1,2, 边红枫1,2, 廖桂项1,2, 盛连喜1,2, 张吉顺3, 高明辉3
1. 国家环境保护湿地生态与植被恢复重点实验室, 长春 130117;
2. 东北师范大学环境学院, 长春 130117;
3. 吉林龙湾国家级自然保护区管理局, 通化 134000
Research status of methods for mapping forested wetlands based on remote sensing
YAN Tingting1,2, BIAN Hongfeng1,2, LIAO Guixiang1,2, SHENG Lianxi1,2, ZHANG Jishun3, GAO Minghui3
1. State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun 130117, China;
2. School of Environment, Northeast Normal University, Changchun 130117, China;
3. Jilin Longwan National Nature Reserve Authority, Tonghua 134000, China
全文: PDF(977 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 森林湿地是湿地的重要组成部分,因其群落结构复杂,从景观尺度上对其进行识别是湿地研究的难点之一。在分析国内外相关科学文献的基础上,从地理生态环境、影像特征及影像信息处理单元角度分析了森林湿地遥感信息提取方法的研究现状,总结了当前森林湿地遥感提取的特点,并在此基础上初步预测未来森林湿地遥感信息提取方法的发展趋势。结果表明:以水文特征反演为依据,认为基于地理生态环境的提取方法包括基于水文地貌学方法、基于光学遥感和微波遥感的分类方法;基于影像特征提取方法包括基于雷达散射特征决策树、随机森林决策树及航片目视解译法;基于影像信息处理单元角度方法主要有基于像元和对象分类2种方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张延冰
郭华东
韩春明
关键词 机载InSAR丘陵地区DEM高精度    
Abstract:Forested wetland is an important type of wetlands. Because of its complex community structure, mapping forested wetland becomes one of challenging issues in wetland research. In this paper, research conclusions published in relevant literatures were analyzed, and then a review of methods for mapping forested wetlands was made from the angles of geographical biological environment, images characteristics and images mapping units. In addition, the basic features of different mapping methods of forested wetlands by remote sensing were presented, and some possible trends of future research were preliminarily predicted. According to understory hydrological inversion, the mapping methods based on geographical biological environment mainly include the hydrogeomorphy- based method and the optical and microwave remote sensing -based classification method, whereas methods based on features of images include decision tree based on radar statistical backscatter characteristics, random forest decision tree and aerial photograph interpretation, which provide data and technical supports for tapping comparing and assessing information, thus conducive to further development of mapping methods. From the angle of imagery interpretation units, the forested wetland mapping methods have undergone the development from per-pixel classification to object-oriented classification.
Key wordsairborne    InSAR    hilly areas    DEM    high precision
收稿日期: 2013-05-27      出版日期: 2014-03-28
:  TP79  
基金资助:环保部公益性行业科研专项项目“东北地区土地利用变化对沼泽湿地影响及其生态功能维护技术研究”(编号:2011467032)和中央高校基本科研业务费专项基金项目“基于探地雷达技术的森林沼泽检测方法研究”(编号:12SSXT155)共同资助。
通讯作者: 盛连喜(1952- ),男,教授,博士生导师,从事环境污染治理与生态修复方面的研究。Email:shenglx@nenu.edu.cn。
作者简介: 严婷婷(1987- ),女,硕士研究生,从事湿地生态遥感与GIS应用方面的研究。Email:yantt493@nenu.edu.cn。
引用本文:   
严婷婷, 边红枫, 廖桂项, 盛连喜, 张吉顺, 高明辉. 森林湿地遥感信息提取方法研究现状[J]. 国土资源遥感, 2014, 26(2): 11-18.
YAN Tingting, BIAN Hongfeng, LIAO Guixiang, SHENG Lianxi, ZHANG Jishun, GAO Minghui. Research status of methods for mapping forested wetlands based on remote sensing. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 11-18.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.02.03      或      https://www.gtzyyg.com/CN/Y2014/V26/I2/11
[1] Henderson F M,Lewis A J.Radar detection of wetland ecosystems:A review[J].International Journal of Remote Sensing,2008,29(20):5809-5835.
[2] Wharton C H,Kitchens W M,Pendleton E C,et al.The ecology of bottomland hardwood swamps of the southeast:A community profile[M].US Fish and Wildlife Service,1982:1-133.
[3] Cowardin L M,Carter F C,Golet E T,et al.Classification of wetlands and deepwater habitats of the United States[M].Diane Publishing Company,1979.
[4] Smith L C.Siberian peatlands a net carbon sink and global methane source since the early holocene[J].Science,2004,303(5656):353-356.
[5] Faulkner S.Urbanization impacts on the structure and function of forested wetlands[J].Urban Ecosystems,2004,7(2):89-106.
[6] Baker C,Lawrence R,Montague C,et al.Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models[J].Wetlands,2006,26(2):465-474.
[7] 赵玉灵.珠江口地区近30年海岸线与红树林湿地遥感动态监测[J].国土资源遥感,2010,22(sl):178-184. Zhao Y L.The remote sensing dynamic monitoring of the evolution of shoreline and mangrove wetlands in the Zhujiang River estuary in the past 30 years[J].Remote Sensing for Land and Resources,2010,22(s1):178-184.
[8] Cowardin L M,Myers V I.Remote sensing for identification and classification of wetland vegetation[J].The Journal of Wildlife Management,1974,38(2):308-314.
[9] 刘红玉,林振山,王文卿.湿地资源研究进展与发展方向[J].自然资源学报,2009,24(12):2204-2212. Liu H Y,Lin Z S,Wang W Q.Research progress and development prospect of wetland resources[J].Jounal of Natural Resouces,2009,24(12):2204-2212.
[10] 郎惠卿.兴安岭和长白山地森林沼泽类型及其演替[J].植物学报,1981,23(6):470-477. Lang H Q.Types and succession of forest bogs in Hingganling and Changbaishan[J].Journal of Integrative Plant Biology,1981,23(6):470-477.
[11] 赵一宇,杜瀹聪.大小兴安岭林区森林沼泽成因、类型及其分布规律的研究[J].东北林学院学报,1980(1):27-35. Zhao Y Y,Du Y C.Research on contributing factor types and the rule of distribution of forestry swamp in the large and lesser Xingan Mountains[J].Journal of North-Eastern Forestry Institute,1980(1):27-35.
[12] 黄初龙,郑伟民.我国红树林湿地研究进展[J].湿地科学,2004,2(4):303-308. Huang C L,Zheng W M.Current progresses of Chinese mangrove wetlands research[J].Wetland Science,2004,2(4):303-308.
[13] Welsch D J,Smart D,Boyer J,et al.Forested wetlands:Functions,benefits and the use of best management practices[M].United States Department of Agriculture,Forest Service,Natural Resources Conservation Service,1995.
[14] H沃尔特.世界植被[M].北京:科学出版社,1984. Walter H.Vegetation of the Earth[M].Beijing:Science Press,1984.
[15] Klinge H,Junk W J,Revilla C J.Status and distribution of forested wetlands in tropical south America[J].Forest Ecology and Management,1990,33-34(C):81-101.
[16] Arnesen A S,Silva T S F,Hess L L,et al.Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images[J].Remote Sensing of Environment,2013,130:51-61.
[17] Mwita E,Menz G,Misana S,et al.Mapping small wetlands of Kenya and Tanzania using remote sensing techniques[J].International Journal of Applied Earth Observation and Geoinformation,2012,21(1):173-183.
[18] Bwangoy J R B,Hansen M C,Roy D P,et al.Wetland mapping in the Congo Basin using optical and Radar remotely sensed data and derived topographical indices[J].Remote Sensing of Environment,2010,114(1):73-86.
[19] Martinez J M,Le Toan T.Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data[J].Remote Sensing of Environment,2007,108(3):209-223.
[20] Klinge H,Junk W J,Revilla C J.Status and distribution of forested wetlands in tropical south America[J].Forest Ecology and Management,1990,33/34:81-101.
[21] Services E.Clues to identifying forested wetlands[Z].New Hampshire:New Hampshire Department of Environmental Services,2009.
[22] Lang M W,Kasischke E S,Prince S D,et al.Assessment of C-band synthetic aperture Radar data for mapping and monitoring coastal plain forested wetlands in the Mid-Atlantic Region,U.S.A [J].Remote Sensing of Environment,2008,112(11):4120-4130.
[23] Reiss K C.Florida wetland condition index for depressional forested wetlands[J].Ecological Indicators,2006,6(2):337-352.
[24] Tiner J R W.Use of high-altitude aerial photography for inventorying forested wetlands in the United States[J].Forest Ecology and Management,1990,33/34:593-604.
[25] Brinson M M.A hydrogeomorphic classification for wetlands[M].Washington:US Army Corps of Engineers,1993.
[26] Murphy P N C,Ogilvie J,Connor K,et al.Mapping wetlands:A comparison of two different approaches for New Brunswick,Canada[J].Wetlands,2007,27(4):846-854.
[27] Hogg A R,Todd K W.Automated discrimination of upland and wetland using terrain derivatives[J].Canadian Journal of Remote Sensing,2007,33(s1):68-83.
[28] 黎夏,刘凯,王树功.珠江口红树林湿地演变的遥感分析[J].地理学报,2006,61(1):26-34 Li X,Liu K,Wang S G.Mangrove wetland changes in the Pearl River estuary using remote sensing[J].Acta Geographica Sinica,2006,61(1):26-34.
[29] Lunetta R S,Balogh M E.Application of mult-temporal Landsat5 TM imagery for wetland identification[J].Photogrammetric Engineering and Remote Sensing,1999,65(11):1303-1310.
[30] Sader S A,Ahl D,Liou W S.Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification in Maine[J].Remote Sensing of Environment,1995,53(3):133-144.
[31] 李华朋,张树清,孙妍.合成孔径雷达在湿地资源研究中的应用[J].自然资源学报,2010,25(1):148-154. Li H P,Zhang S Q,Sun Y.The applications of SAR for wetlands resource research[J].Journal of Natural Resources,2010,25(1):148-154.
[32] 王莉雯,卫亚星.湿地生态系统雷达遥感监测研究进展[J].地理科学进展,2011,30(9):1107-1117. Wang L W,Wei Y X.Progress in monitoring wetland ecosystems by Radar remote sensing[J].Progress in Geography,2011,30(9):1107-1117.
[33] 刘伟.植被覆盖地表极化雷达土壤水分反演与应用研究[D].北京:中国科学院研究生院,遥感应用研究所,2005. Liu W.Study on soil moisture inversion and application with polarization Radar in vegetated area[D].Institude of Remote Sensing Applications,Chinese Acadaemy of Sciences,2005.
[34] Ulaby F T,Brisco B,Dobson C.Improved spatial mapping of rainfall events with spaceborne SAR imagery[J].IEEE Transactions on Geoscience and Remote Sensing,1983,21(1):118-121.
[35] Kwoun O I,Lu Z.Multi-temporal RadarSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana[J].Photogrammetric Engineering and Remote Sensing,2009,75(5):607-617.
[36] Hess L L,Melack J M,Simonett D S.Radar detection of flooding beneath the forest canopy:A review[J].International Journal of Remote Sensing,1990,11(7):1313-1325.
[37] Li J H,Chen W J.A rule-based method for mapping Canada's wetlands using optical,Radar and DEM data[J].International Journal of Remote Sensing,2005,26(22):5051-5069.
[38] Zhao T,Zhang L,Jiang L,et al.Soil moisture retrieval by dual-frequency polarimetric sar data in the corn growing regions[M].Remote Sensing Conference Proceedings on Both Sides of the Taiwan Straits,Guiling,2008:1-7.
[39] 武胜利.基于TRMM的主被动微波遥感结合反演土壤水分算法研究[D].北京:中国科学院研究生院,遥感应用研究所,2006. Wu S L.Study on combined active/passive microwave remote sensing approach for soil moisture retrieval with TRMM data[D].Beijing:Institude of Remote Sensing Applications,Chinese Academy of Sciences,2006.
[40] Wang Y,Hess L L,Filoso S,et al.Understanding the Radar backscattering from flooded and nonflooded Amazonian forests:Results from canopy backscatter modeling[J].Remote Sensing of Environment,1995,54(3):324-332.
[41] Kasischke E S,Smith K B,Bourgeau-Chavez L L,et al.Effects of seasonal hydrologic patterns in south Florida wetlands on Radar backscatter measured from ERS-2 SAR imagery[J].Remote Sensing of Environment,2003,88(4):423-441.
[42] Stolt M H,Baker J C.Evaluation of national wetland inventory maps to inventory wetlands in the southern Blue Ridge of Virginia[J].Wetlands,1995,15(4):346-353.
[43] Costa M P F.Use of SAR satellites for mapping zonation of vegetation communities in the Amazon floodplain[J].International Journal of Remote Sensing,2004,25(10):1817-1835.
[44] Harvey K R,Hill G J E.Vegetation mapping of a tropical freshwater swamp in the northern territory,Australia:A comparison of aerial photography,Landsat TM and SPOT satellite imagery[J].International Journal of Remote Sensing,2001,22(15):2911-2925.
[45] Corcoran J,Knight J,Brisco B,et al.The integration of optical,topographic,and Radar data for wetland mapping in northern Minnesota[J].Canadian Journal of Remote Sensing,2011,37(5):564-582.
[46] Kudray G M,Gale M R.Evaluation of national wetland inventory maps in a heavily forested region in the upper great lakes[J].Wetlands,2000,20(4):581-587.
[47] Wang Y.Seasonal change in the extent of inundation on floodplains detected by JERS-1 synthetic aperture Radar data[J].International Journal of Remote Sensing,2004,25(13):2497-2508.
[48] Lawrence R,Bunn A,Powell S,et al.Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis[J].Remote Sensing of Environment,2004,90(3):331-336.
[49] Whitcomb J,Moghaddam M,McDonald K,et al.Wetlands map of Alaska using L-band Radar satellite imagery[C]//IEEE International Geoscience and Remote Sensing Symposium.Barcelona:IEEE,2007:2487-2490.
[50] 袁愈才.基于像元的地表覆盖变化信息提取方法比较[D].长沙:中南大学,2011. Yuan Y C.The comparison of land cover change information extraction methods pixel-based[D].Changsha:Central South University,2011.
[51] 江辉,周文斌,刘瑶.鄱阳湖湿地遥感分类研究及应用[J].遥感技术与应用,2008,23(6):648-652. Jiang H,Zhou W B,Liu Y.Research and application of the Poyang Lake wetland classification using remote sensing[J].Remote Sensing Technology and Application,2008,23(6):648-652.
[52] 李建平,张柏,张泠,等.湿地遥感监测研究现状与展望[J].地理科学进展,2007,26(1):33-43. Li J P,Zhang B,Zhang L,et al.Current status and prospect of researches on wetland monitoring based on remote sensing[J].Progress in Geography,2007,26(1):33-43.
[53] 游丽平.面向对象的高分辨率遥感影像分类方法研究[D].福州:福建师范大学,2007. You L P.A classification study of high resolution data of remote sensing based on the object-oriented analysis[D].Fuzhou:Fujian Normal University,2007.
[54] Silva T S F,Costa M P F,Melack J M.Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain:A remote sensing approach[J].Remote Sensing of Environment,2010,114(9):1998-2010.
[55] Evans T L,Costa M,Telmer K,et al.Using ALOS/PALSAR and RadarSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(4):560-575.
[56] Evans T L,Costa M.Landcover classification of the lower Nhecolndia subregion of the brazilian pantanal wetlands using ALOS/PALSAR,RadarSAT-2 and ENVISAT/ASAR imagery[J].Remote Sensing of Environment,2013,128:118-137.
[57] Dronova I,Gong P,Clinton N E,et al.Landscape analysis of wetland plant functional types:The effects of image segmentation scale,vegetation classes and classification methods[J].Remote Sensing of Environment,2012,127:357-369.
[58] Hess L L,Melack J M,Novo E M L M,et al.Dual-season mapping of wetland inundation and vegetation for the central Amazon Basin[J].Remote Sensing of Environment,2003,87(4):404-428.
[59] Jenkins R B,Frazier P S.High-resolution remote sensing of upland swamp boundaries and vegetation for baseline mapping and monitoring[J].Wetlands,2010,30(3):531-540.
[60] Zhang C Y,Xie Z X.Combining object-based texture measures with a neural network for vegetation mapping in the everglades from hyperspectral imagery[J].Remote Sensing of Environment,2012,124:310-320.
[61] Bartsch A,Kidd R A,Pathe C,et al.Satellite Radar imagery for monitoring inland wetlands in boreal and sub-arctic environments[J].Aquatic Conservation:Marine and Freshwater Ecosystems,2007,17(3):305-317.
[62] Townsend P A,Walsh S J.Remote sensing of forested wetlands:Application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA[J].Plant Ecology,2001,157(2):129-149.
[1] 吴芳, 李瑜, 金鼎坚, 李天祺, 郭华, 张琦洁. 无人机三维地障信息提取技术应用于航空物探飞行轨迹规划[J]. 自然资源遥感, 2022, 34(1): 286-292.
[2] 江娜, 陈超, 韩海丰. 海岸带地类统计模型中DEM空间尺度优选方法[J]. 自然资源遥感, 2022, 34(1): 34-42.
[3] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[4] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
[5] 李梦梦, 范雪婷, 陈超, 李倩楠, 杨锦. 徐州矿区2016—2018年地面沉降监测与分析[J]. 自然资源遥感, 2021, 33(4): 43-54.
[6] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[7] 沙永莲, 王晓文, 刘国祥, 张瑞, 张波. 基于SBAS InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演[J]. 自然资源遥感, 2021, 33(3): 194-201.
[8] 张腾, 谢帅, 黄波, 范景辉, 陈建平, 童立强. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2): 213-219.
[9] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[10] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4): 16-22.
[11] 张玲, 刘斌, 葛大庆, 郭小方. 基于多源SAR数据唐山城区活动断裂微小差异形变探测[J]. 国土资源遥感, 2020, 32(3): 114-120.
[12] 盖颖颖, 王章军, 杨雷, 周燕, 龚金龙. 金沙滩近岸水体叶绿素a和悬浮物遥感反演研究[J]. 国土资源遥感, 2020, 32(3): 129-135.
[13] 梁凯旋, 章桂芳, 张浩然. 一种综合DEM和遥感影像提取洪积扇的方法[J]. 国土资源遥感, 2020, 32(2): 138-145.
[14] 孟蕾, 林超. 机载LiDAR技术生成DEM的质量检查与解决方案探讨[J]. 国土资源遥感, 2020, 32(1): 7-12.
[15] 李奇, 王建超, 韩亚超, 高子弘, 张永军, 金鼎坚. 基于CZMIL Nova的中国海岸带机载激光雷达测深潜力分析[J]. 国土资源遥感, 2020, 32(1): 184-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发