Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 72-80    DOI: 10.6046/zrzyyg.2023091
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
全天候逐时百米尺度地表温度重建方法
颜佳楠1,2(), 陈虹3(), 张雨泽4, 吴骅1,5
1.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101
2.中国科学院大学,北京 101408
3.中国自然资源航空物探遥感中心,北京 100083
4.中国交通通信信息中心交通安全应急信息技术国家工程研究中心,北京 100028
5.江苏省地理信息资源开发与利用协同创新中心,南京 210023
A method for reconstructing hourly 100-m-resolution all-weather land surface temperature
YAN Jianan1,2(), CHEN Hong3(), ZHANG Yuze4, WU Hua1,5
1. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 101408, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
4. National Engineering Research Center for Transportation Safety and Emergency Informatics, China Transport Telecommunications & Information Center, Beijing 100028, China
5. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
全文: PDF(10702 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地表温度是区域和全球尺度地表过程的重要参数,通过热红外遥感可获取区域或全球尺度的地表温度的时空信息。然而,受到热红外传感器硬件特性以及热红外电磁波无法穿透云层的限制,目前无法获取兼顾高时空分辨率的地表温度。该研究提出了一种重建全天候100 m空间分辨率的逐小时地表温度的方法。方法主要包含3个步骤: ①在传统温度年循环模型的基础上,重建中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)4时刻的云下地表温度; ②借助于温度的日变化趋势估计地表温度的日变化曲线,获取逐小时的地表温度; ③以光谱指数作为回归因子,利用极端梯度提升树对逐小时地表温度进行空间降尺度。研究结果表明,提出的重构方法可以获取时空连续的地表温度产品,提高了地表温度的空间分辨率,提供了更丰富的纹理信息。通过美国地表辐射观测网络(surface radiation budget network,SURFRAD)站点数据对逐时100 m尺度的地表温度进行验证,结果表明逐小时重建的地表温度与站点实测值的变化趋势大致相同,全天候逐小时地表温度重建方法精度较高,R2为0.95,均方根误差(root mean squared error,RMSE)为3.75 K,偏差(bias)为0.75 K。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颜佳楠
陈虹
张雨泽
吴骅
关键词 地表温度MODIS云下地表温度重建降尺度XGBoost    
Abstract

Land surface temperature (LST) proves to be an important parameter in surface processes on regional and global scales, and its spatiotemporal information can be obtained through thermal infrared remote sensing. However, the constraints of thermal infrared sensors (TIRSs) themselves and the inability of thermal infrared electromagnetic waves to penetrate clouds render it impossible to obtain LST with a high spatiotemporal resolution currently. This study presents a method for reconstructing hourly LST at 100-m resolution in all weathers. This method consists of three main steps: ① cloudy LST at four moments is reconstructed using a moderate resolution imaging spectroradiometer (MODIS) based on the conventional annual temperature cycle (ATC) model; ② the daily variation curve of LST is estimated based on the daily trend in the skin temperature (SKT); ③ with spectral indices as regressors, spatial downscaling is conducted for the hourly LST using Extreme Gradient Boosting (XGBoost). The results show that the proposed reconstruction method can obtain spatiotemporally continuous LST products, improve the spatial resolution of LST, and provide more details. The validation of the hourly 100-m-resolution LST using data from the surface radiation budget network (SURFRAD) developed by the U.S. indicates that the reconstructed hourly LST exhibits roughly the same trend as the measured values of the SURFRAD. The method for reconstructing all-weather hourly LST boasts high accuracy, with R2 of 0.95, a root mean squared error (RMSE) of 3.75 K, and a bias of 0.75 K.

Key wordsLST    MODIS    cloudy LST reconstruction    downscaling    XGBoost
收稿日期: 2023-04-06      出版日期: 2024-09-03
ZTFLH:  TP79  
  P407.6  
基金资助:中国科学院战略性先导科技专项“基于无人机的黑土地数据监测与感知系统”(XDA28050200);广西科技计划项目“基于高分遥感的公路地质灾害高风险区域监测预警技术研究”(桂科AB20159034)
通讯作者: 陈 虹(1982-),女,博士,高级工程师,主要从事热红外遥感研究。Email: chch1223@126.com
作者简介: 颜佳楠(1998-),女,硕士研究生,主要从事地表温度时空降尺度研究。Email: yanjn.20s@igsnrr.ac.cn
引用本文:   
颜佳楠, 陈虹, 张雨泽, 吴骅. 全天候逐时百米尺度地表温度重建方法[J]. 自然资源遥感, 2024, 36(3): 72-80.
YAN Jianan, CHEN Hong, ZHANG Yuze, WU Hua. A method for reconstructing hourly 100-m-resolution all-weather land surface temperature. Remote Sensing for Natural Resources, 2024, 36(3): 72-80.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023091      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/72
Fig.1  研究区Landsat8 B5(R),B4(G),B3(B)假彩色合成影像
研究区
编号
站点代号 站点名称 经度/(°) 纬度/(°) 地表
类型
A BND Bondville -88.37 40.05 草地
B DRA Desert Rock -116.02 36.62 灌木丛
C SXF Sioux Falls -96.62 43.73 耕地
D GCM Goodwin Creek -89.87 34.25 草地
E FPK Fort Peck -105.10 48.31 草地
F TBL Table Mountain -105.24 40.13 草地
Tab.1  SURFRAD站点的详细信息
研究区
编号
站点
代号
中心经
度/(°)
中心纬
度/(°)
获取日期 获取UTC
时间
A BND -88.17 39.87 2019-07-12 16: 29
B DRA -116.03 36.58 2019-06-24 18: 21
C SXF -96.43 43.96 2019-05-10 17: 10
D GCM -89.89 34.30 2019-07-03 16: 37
E FPK -105.09 48.30 2019-03-17 17: 46
F TBL -105.07 39.94 2019-09-27 17: 37
Tab.2  研究区Landsat8影像的时空信息
Fig.2  总体技术路线
Fig.3-1  研究区A的逐小时LST空间分布
Fig.3-2  研究区A的逐小时LST空间分布
Fig.4  LST估计值和站点观测值的逐小时曲线
Fig.5  6个站点的实际值与LST估计值的散点图
站点代号 bias/K RMSE/K R2
BND 0.46 1.58 0.93
DRA 3.48 5.21 0.88
SXF -0.86 2.85 0.90
GCM 1.77 2.91 0.34
FPK -1.24 1.71 0.86
TBL 0.92 5.91 0.19
Tab.3  6个站点逐小时LST的评价指标
[1] Anderson M, Norman J, Kustas W, et al. A thermal-based remote sensing technique for routine mapping of land-surface carbon,water and energy fluxes from field to regional scales[J]. Remote Sensing of Environment, 2008, 112(12):4227-4241.
[2] Hu L, Sun Y, Collins G, et al. Improved estimates of monthly land surface temperature from MODIS using a diurnal temperature cycle (DTC) model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168:131-140.
[3] Voogt J A, Oke T R. Thermal remote sensing of urban climates[J]. Remote Sensing of Environment, 2003, 86(3):370-384.
[4] Giglio L, Csiszar I, Restás Á, et al. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER)[J]. Remote Sensing of Environment, 2008, 112(6):3055-3063.
[5] Stathopoulou M, Cartalis C. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation[J]. Remote Sensing of Environment, 2009, 113(12):2592-2605.
[6] Anderson M C, Allen R G, Morse A, et al. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources[J]. Remote Sensing of Environment, 2012, 122:50-65.
[7] Mustafa E K, Abd El-Hamid H T, Tarawally M. Spatial and temporal monitoring of drought based on land surface temperature,Freetown City,Sierra Leone,West Africa[J]. Arabian Journal of Geosciences, 2021, 14(11):1013.
[8] Ul Din S, Mak H W L. Retrieval of land-use/land cover change (LUCC) maps and urban expansion dynamics of hyderabad,pakistan via landsat datasets and support vector machine framework[J]. Remote Sensing, 2021, 13(16):3337.
[9] Li Z, Tang B, Wu H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sensing of Environment, 2013, 131:14-37.
[10] Agam N, Kustas W P, Anderson M C, et al. A vegetation index based technique for spatial sharpening of thermal imagery[J]. Remote Sensing of Environment, 2007, 107(4):545-558.
[11] Gallo K, Hale R, Tarpley D, et al. Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions[J]. Journal of Applied Meteorology and Climatology, 2011, 50(3):767-775.
[12] Shwetha H R, Kumar D N. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:40-55.
[13] Tan W, Wei C, Lu Y, et al. Reconstruction of all-weather daytime and nighttime MODIS Aqua-Terra land surface temperature products using an XGBoost approach[J]. Remote Sensing, 2021, 13(22) :4723.
[14] Xu F, Fan J, Yang C, et al. Reconstructing all-weather daytime land surface temperature based on energy balance considering the cloud radiative effect[J]. Atmospheric Research, 2022, 279:106397.
[15] Lin C H, Lai K H, Chen Z B, et al. Patch-based information reconstruction of cloud-contaminated multitemporal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):163-174.
[16] Ozelkan E, Bagis S, Ozelkan E C, et al. Spatial interpolation of climatic variables using land surface temperature and modified inverse distance weighting[J]. International Journal of Remote Sensing, 2015, 36(4):1000-1025.
[17] Neteler M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010, 2(1):333-351.
[18] Mukherjee S, Joshi P K, Garg R D. Regression-kriging technique to downscale satellite-derived land surface temperature in heterogeneous agricultural landscape[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3):1245-1250.
[19] Fu P, Xie Y, Weng Q, et al. A physical model-based method for retrieving urban land surface temperatures under cloudy conditions[J]. Remote Sensing of Environment, 2019, 230:111191.
[20] Long D, Yan L, Bai L, et al. Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach[J]. Remote Sensing of Environment, 2020, 246:111863.
[21] Wu P, Su Y, Duan S b, et al. A two-step deep learning framework for mapping gapless all-weather land surface temperature using thermal infrared and passive microwave data[J]. Remote Sensing of Environment, 2022, 277:113070.
[22] Zhu X, Duan S B, Li Z L, et al. Reconstruction of land surface temperature under cloudy conditions from Landsat8 data using annual temperature cycle model[J]. Remote Sensing of Environment, 2022, 281:113261.
[23] Jin M, Dickinson R E. A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances[J]. Journal of Geophysical Research:Atmospheres, 2000, 105:27037-27047.
[24] Zhang X, Chen W, Chen Z, et al. Construction of cloud-free MODIS-like land surface temperatures coupled with a regional weather research and forecasting (WRF) model[J]. Atmospheric Environment, 2022, 283:119190.
[25] Duan S B, Li Z L, Leng P. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data[J]. Remote Sensing of Environment, 2017, 195:107-117.
[26] Yoo C, Im J, Cho D, et al. Estimation of all-weather 1 km MODIS land surface temperature for humid summer days[J]. Remote Sensing, 2020, 12(9) :1398.
[27] Zhang X, Zhou J, Liang S, et al. Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:321-344.
[28] Zou Z, Zhan W, Liu Z, et al. Enhanced modeling of annual temperature cycles with temporally discrete remotely sensed thermal observations[J]. Remote Sensing, 2018, 10(4) :650.
[29] Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
[30] Xia H, Chen Y, Li Y, et al. Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures[J]. Remote Sensing of Environment, 2019, 224:259-274.
[31] Zhu X, Helmer E H, Gao F, et al. A flexible spatiotemporal method for fusing satellite images with different resolutions[J]. Remote Sensing of Environment, 2016, 172:165-177.
[32] Essa W, Verbeiren B, van der Kwast J, et al. Evaluation of the DisTrad thermal sharpening methodology for urban areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 19:163-172.
[33] Gao F, Kustas W, Anderson M. A data mining approach for sharpening thermal satellite imagery over land[J]. Remote Sensing, 2012, 4(11):3287-3319.
[34] Ghosh A, Joshi P K. Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96:76-93.
[35] Pan X, Zhu X, Yang Y, et al. Applicability of downscaling land surface temperature by using normalized difference sand index[J]. Scientific Reports, 2018, 8(1):9530.
doi: 10.1038/s41598-018-27905-0 pmid: 29934513
[36] Govil H, Guha S, Dey A, et al. Seasonal evaluation of downscaled land surface temperature:A case study in a humid tropical city[J]. Heliyon, 2019, 5(6) :e01923.
[37] Hutengs C, Vohland M. Downscaling land surface temperatures at regional scales with random forest regression[J]. Remote Sensing of Environment, 2016, 178:127-141.
[38] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J] .国土资源遥感. 2018, 30(1):78-86.doi:10.6046/gtzyyg.2018.01.11.
Hua J W, Zhu S Y, Zhang G X. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land and Resources, 2018, 30(1):78-86.doi:10.6046/gtzyyg.2018.01.11.
[39] 李婉, 牛陆, 陈虹, 等. 基于随机森林算法的地表温度鲁棒降尺度方法[J]. 地球信息科学, 2020, 22(8):1666-1678.
Li W, Niu L, Chen H, et al. Robust downscaling method of land surface temperature by using random forest algorithm[J]. Journal of Geo-information Science, 2020, 22(8):1666-1678.
[40] 颜佳楠, 陈虹, 姚光林, 等. 基于XGBoost的LST空间降尺度方法[J] .无线电工程, 2021, 51(12):1508-1516.
Yan J N, Chen H, Yao G L, et al. A spatial downscaling method of land surface temperature based on XGBoost algorithm[J]. Radio Engineering, 2021, 51(12):1508-1516.
[41] Wang K, Liang S. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites[J]. Remote Sensing of Environment, 2009, 113(7):1556-1565.
[42] Wan Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment, 2014, 140:36-45.
[43] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049.
[44] Zhao Y, Tang Q, Wu T, et al. Effects of soil parameterization on permafrost modeling in the Qinghai-Tibet Plateau:A calibration-constrained analysis[J]. Cold Regions Science and Technology, 2023, 210:103833.
[45] Chen T, Guestrin C. XGBoost:A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016:785-794.
[46] Pan Z, Lu W, Wang H, et al. Groundwater contaminant source identification based on an ensemble learning search framework associated with an auto XGBoost surrogate[J]. Environmental Modelling and Software, 2023, 159:105588.
[47] Ma M, Zhao G, He B, et al. XGBoost-based method for flash flood risk assessment[J]. Journal of Hydrology, 2021, 598:126382.
[48] Dong J, Zeng W, Wu L, et al. Enhancing short-term forecasting of daily precipitation using numerical weather prediction bias correcting with XGBoost in different regions of China[J]. Engineering Applications of Artificial Intelligence, 2023, 117:105579.
[1] 杨辰飞, 吴田军, 王长鹏, 杨丽娟, 骆剑承, 张新. 基于Copula函数的千米尺度综合干旱指数构建与应用——以重庆市为例[J]. 自然资源遥感, 2024, 36(3): 117-127.
[2] 王健, 杜玉玲, 高钊, 吕海燕, 时雷. 基于MODIS时序数据的大兴安岭火烧迹地时空变化及其森林恢复研究[J]. 自然资源遥感, 2024, 36(2): 142-150.
[3] 李威洋, 史海静, 聂玮廷, 杨鑫源. 基于地表参数变化的延河流域地表温度时空演变分析[J]. 自然资源遥感, 2024, 36(2): 229-238.
[4] 陈艳, 袁晶, 唐春花, 孙超, 唐枭, 汪明有. 武功山隆起区地热资源预测遥感方法研究[J]. 自然资源遥感, 2024, 36(2): 27-38.
[5] 李益敏, 冯显杰, 李媛婷, 杨雪, 向倩英, 计培琨. 云南省植被覆盖时空变化特征及影响因素研究[J]. 自然资源遥感, 2024, 36(2): 116-125.
[6] 姚灵筠, 王力, 牛铮, 尹子琪, 付雨文. 2000—2018年长株潭城市群城市扩张及其热岛响应[J]. 自然资源遥感, 2024, 36(1): 162-168.
[7] 李世杰, 冯徽徽, 王珍, 杨卓琳, 王姝. 2010—2019年间洞庭湖流域生态环境状况时空动态特征及影响因素[J]. 自然资源遥感, 2024, 36(1): 179-188.
[8] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
[9] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 天津市南部平原地面沉降区新兴风险评估[J]. 自然资源遥感, 2023, 35(2): 182-192.
[10] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[11] 马俊俊, 王春磊, 黄晓红. 基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例[J]. 自然资源遥感, 2023, 35(1): 198-204.
[12] 田晨, 张金龙, 金义蓉, 董世元, 王彬, 张乃祥. 一种利用贝叶斯优化的蓝藻遥感分类方法[J]. 自然资源遥感, 2023, 35(1): 49-56.
[13] 李显风, 袁正国, 邓卫华, 杨立苑, 周雪莹, 胡丽丽. 融合多种机器学习模型的2 m气温空间降尺度方法[J]. 自然资源遥感, 2023, 35(1): 57-65.
[14] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[15] 左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发