Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1999, Vol. 11 Issue (2) : 43-49     DOI: 10.6046/gtzyyg.1999.02.08
Technology Application |
USING MULTISOURCE GEOLOGICAL INFORMATION TO DISTINGUISH THE ROCK PROPERTY OF LINGQUAN
Li Jianfeng, Zhao Yingjun, Liu Dechang, Fu Jin
Beijing Research Institute of Uranium Geology, Beijing 100029
Download: PDF(978 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This paper, taking the Lingquan Basin for example, approaches the method of how to use the airborne γ spectrum data, the airborne magnetic data and the remote sensing data to distinguish the rock property. These methods are ①the method of using γ spectrum data and MSS data, by K-L change to extract the rock property information; ②the method of using γ spectrum and TM data, by IHS change to extract the rock peoperty information.

Keywords  Multi-scale segmentation      Object-oriented classification      Change detection      The construction of key projects      National studium     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Hao
HU Zhuo-Wei
ZHAO Wen-Hui
GE Ru-Bing
Cite this article:   
LIU Hao,HU Zhuo-Wei,ZHAO Wen-Hui, et al. USING MULTISOURCE GEOLOGICAL INFORMATION TO DISTINGUISH THE ROCK PROPERTY OF LINGQUAN[J]. REMOTE SENSING FOR LAND & RESOURCES, 1999, 11(2): 43-49.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1999.02.08     OR     https://www.gtzyyg.com/EN/Y1999/V11/I2/43

1 郭德方.遥感图像的计算机处理和棋式识别.北京:电子工业出版社,1987
2 章哗等编著.放射性方法勘查.北京:原子能出版社,1990
3 朱亮璞主编.遥感地质学.北京:地质出版社,1994
4 赵英俊.多源地学信息集成技术在庐极火山洼地铀成矿环境分析和成矿预测中的应用:(硕士学位论文),北京:核工业北京地质研究院,1995
5 刘德长等.以航空放射性侧t为主的多源信息综合技术及应用.中国科学(B缉),1993(6)
6 Fernandez-Alonso M. Tahon A. lithologicaldiscrimicationandstruo-turaltrendsonw-rwanda (Africa) onofsirbomeradiometricandaeronaAneticsurveys,toa Iandsat TMscene. Photogram-metricRemoteSensinx, 1991, 57, (9):1155~1162
7 Joseph S Ihival. Compositecolorimagesofaerialgammarayspedmmetricdata. Geoph}cs, 1982, 48,(6):722~735

[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[3] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[4] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[5] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[6] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[7] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[8] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[9] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[10] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[11] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[12] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
[13] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[14] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[15] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech