Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1999, Vol. 11 Issue (3) : 47-50     DOI: 10.6046/gtzyyg.1999.03.10
New Theories and Methods |
NEW ADVANCE IN RETRIEVAL OF LAND SURFACE TEMPERATURE (LST)
Chen Liangfu, Xu xiru
Institute of RS and GIS of Peking University, Beijing China 100871
Download: PDF(315 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Authors had analized some problems about the retrieval of LST using multi_band thermal infrared data and the possibility to retrieve component temperature of mixed pixel by multi_angle thermal infrared data based on the law of thermal radiant direction of non_isothermal mixed pixel.

Keywords Remote sensing      Impervious surface      Landscape pattern      Object segmentation     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Wei-Feng
WANG Yi
HU Shu-Qi
MA Sheng-Ming
LIU Chong-Min
LI Bing
XI Ming-Jie
Cite this article:   
LI Wei-Feng,WANG Yi,HU Shu-Qi, et al. NEW ADVANCE IN RETRIEVAL OF LAND SURFACE TEMPERATURE (LST)[J]. REMOTE SENSING FOR LAND & RESOURCES, 1999, 11(3): 47-50.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1999.03.10     OR     https://www.gtzyyg.com/EN/Y1999/V11/I3/47

1 Labed J, Stoll M P. Spatial variability of land surface emissivity in the thermal infcaced band: Spectral signature and effective surface temperature. Remote Sens. Environ.,1991.38:1~17
2 Dozier J, Warren S G. Effect of viewing angle ar the infrared brightness temperature of snow. Water Resourocs Rag.,1982,18(5):1424~1434
3 Sutherland R A. I3roadband and spectral emnissavities (2~18pm) of sane natural soil and vegetation. American MeteorologicalSociety, 1986, 199~203
4 Salisbury J W, D. M. D'Aria. Infrared (8~14}rm) remote sensing of soil particle sire. Remote Sens. Enviton.,1992,42:157~165
5 Xu Xiru, Liu Qinhuo, Chen Jiay.D),retrieval of land surface temperature and emissivity. Seance in Chin SeriaK 1998,41(6):658~668
6 陈良富,徐希璐,张仁华.地表温度遥感反演的现状与发展趋势.地理科学进展,1998,增刊
7 Kimes D S, Smith J A, Link L E. Thermal IR extiance rrrodel of a plant canopy. Applied Optics, 1981, 20:623~632
8 Norman J, Backer F. Termirmlogy in thermal infrared remote sensing of natural surface. Agriculture and Frest Meteorobgy,1995,77:153~176
9 Wan Z, Dozier J. A generalized split window algorithm for retrieving land~surface temperature frorrr space. IEEE Traps.Geosci. and Remote Sens.,1996,34(4)892~905
10 Li X, Strahler A H. Effective emissivity for non~isothemrat surface and a conceptual model of its directiality. IEEE Traps. On Geoscience and Remote Sensing,1998
11 Tarantola A. Inverse problem theory mettnds for data fitting and model parameter estimation. Amsterdam-Oxford New York Tokyro, 1987
12 Zhao B L, Zhu Y G. et al. Meteorological satellite TIROSN TOVS xermte sensing of atmospheric property and ckrud, advance in atmospheric spheric xierxe. 1993,10(4):387~392

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech