Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2000, Vol. 12 Issue (3) : 53-56     DOI: 10.6046/gtzyyg.2000.03.09
Technology and Methodology |
MULTI-TEMPORAL HIS TRANSFORM FOR CHANGE INFORMATION DETECTION
SUN Dan-feng1, ZHOU Guang-yuan2, YANG Ji-hong2
1. Department of Land Resources, China Agricultural University, Beijing100094, China;
2. China Land Survey and Planning College, Beijing100029, China
Download: PDF(855 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to applying IHStransform to change detection, first use linear aggression to perform Icomponent and high spatial resolution PANradiometric rectification to minimize noise and variation caused by the difference of sensor type and imaging time. Then use coefficent overlay method to create a new Icomponent for inverse transform. This method improves the fusion result and enhance the change information for classification.
Keywords  Landslide      Artificial neural network      Quantification      Distribution     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Chong
CHEN Xiao-Hua
ZOU Le-Jun
WU Wen-Yuan
SU Nan
KONG Fan-Li
WANG Jian-Li
RUAN Bai-Yao
HUANG Jun-Ge
HOU Dong-Mei
YANG Ting-Wei
Cite this article:   
ZHANG Chong,CHEN Xiao-Hua,ZOU Le-Jun, et al. MULTI-TEMPORAL HIS TRANSFORM FOR CHANGE INFORMATION DETECTION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2000, 12(3): 53-56.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2000.03.09     OR     https://www.gtzyyg.com/EN/Y2000/V12/I3/53


[1] Singh A. Digital change detection techniques using remotely-sensed data【J】. Int. J. Remote Sens, 1989, 10(6): 989~1003.



[2] Jensen J R, Toll D L. Detecting residential land use development at the urban fringe【J】. Photogramm. Eng.& Remote Sens, 1982, 48: 629~643.



[3] Coppin P R, Bauer M E. Digital change detection in forest ecosystems with remote sensing imagery【J】. Remote sensing reviews, 1996, 13: 207~234.



[4] Pohl C, Van Genderen J L. Multisensor image fusion in remote sensing: concepts, methods and applications【J】. Int. J. Remote Sens, 1998, 19(5): 823~854.



[5] Franklin S E, Bloggett C F. An example of satellite multisensor data fusion【J】. Computers & Geosciences, 1993, 19(4): 577~583.



[6] Welch R, Ehlers M. Merging multiresolution SPOT HRV and Landsat TM data【J】. Photogramm. Eng.& Remote Sens. 1987, 53: 301~303.



[7] Carper W J, Lillesand T M, Kieffer R W. The use of Intensity-Hue-Saturation transformations for merging SPOT Panchromatic and multispectral image data【J】. Photogramm. Eng.& Remote Sens, 1990, 56(4): 459~467.



[8] Harris J R, Murray R, Hirose T. HIS transform for the integration of radar imagery with other remotely sensed data【J】. Photogramm. Eng.& Remote Sens, 1990, 56: 1631~1641.



[9] Ehlers M. Multisensor image fusion techniques in remote sensing【J】. ISPRS journal of photogrammetry and remote sensing, 1991, 46,19~30.



[10] Hall F G, Strebel D E, Nickeson J.E, et al. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images【J】. remote sens. environ, 1991, 35: 11~27.
[1] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[2] SUN Ang, YANG Qinghua, LIU Zhi, CHEN Hua, JIANG Xiao, JIANG Shoumin, BIAN Yu, TIAN Li. Transportation in the Siliguri Corridor, West Bengal, India: distribution characteristics, trafficability, and geological environment[J]. Remote Sensing for Natural Resources, 2021, 33(3): 138-147.
[3] YANG Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model[J]. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
[4] LI Xiao, LIU Ying, YAO Weiling, YANG Jinzhong, LI Yongzhi, WANG Jie. Automatic plotting of illegal mines based on ArcPy[J]. Remote Sensing for Land & Resources, 2020, 32(3): 247-251.
[5] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[6] Xiao CHEN, Dahong BIAN, Yanhong CUI, Xinli LIU, Xianglei MENG, Wei SU. Extraction of probability density distribution function of corn plant[J]. Remote Sensing for Land & Resources, 2020, 32(1): 75-80.
[7] Dongsheng XIAO, Song YANG. A review of population spatial distribution based on nighttime light data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 10-19.
[8] Ke ZHANG, Jianzhong LIU, Weiming CHENG. Morphological features and spatial distribution of the lunar Copernican secondary craters[J]. Remote Sensing for Land & Resources, 2019, 31(1): 255-263.
[9] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[10] Yuanwen ZENG, Yi DI, Yan HU, Jing CHEN, Songjiang DUAN. An analysis of spatial distribution and optimization of rural settlements:A case study of Niejia Village in Shitan Town,Hechuan District,Chongqing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 113-119.
[11] Gang LIU, Yunpeng YAN, Jianyu LIU. Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 154-161.
[12] Rui LIU, Xu JIANG, Jing ZHAO, Yunfan LI. GIS based research on the spatial distribution of population density in illegal buildings in Shenzhen City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 233-237.
[13] YAO Zhenhai, QIU Xinfa, SHI Guoping, ZHANG Xiliang. An analysis of spatial distribution characteristics of monthly mean NDVI in the past ten years in China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 181-186.
[14] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
[15] XU Bin. Unsupervised classification of fully polarimetric SAR data based on non-Gauss distribution[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech