Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 247-251     DOI: 10.6046/gtzyyg.2020.03.32
|
Automatic plotting of illegal mines based on ArcPy
LI Xiao1(), LIU Ying2, YAO Weiling1, YANG Jinzhong1, LI Yongzhi1, WANG Jie1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources,Beijing 100083, China
2. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
Download: PDF(2256 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

For the purpose of monitoring mine development status by using remote sensing technology, ArcGIS software is usually used to extract relevant information to produce illegal mine distribution maps, thus providing data support for relevant departments. At present, artificially produced illegal mine distribution maps have many problems, such as high production cost, high professionalism, large workload, inconsistent drawing format and low accuracy. Therefore, a method for automatically generating illegal mine distribution maps based on ArcPy is developed. The method automatically extracts the attribute information and spatial information of the remote sensing monitoring data of illegal mine mining areas, and automatically locates the image range and edits the text information according to the drawing template. The automatic generation of mine distribution maps greatly reduces the workload of technicians. It is of practical significance in improving the efficiency of mine remote sensing monitoring.

Keywords ArcPy      mine monitoring      distribution map of illegal mines      remote sensing image     
:  TP319  
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao LI
Ying LIU
Weiling YAO
Jinzhong YANG
Yongzhi LI
Jie WANG
Cite this article:   
Xiao LI,Ying LIU,Weiling YAO, et al. Automatic plotting of illegal mines based on ArcPy[J]. Remote Sensing for Land & Resources, 2020, 32(3): 247-251.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.32     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/247
Fig.1  Sample of illegal mines distribution map
Fig.2  Manual process of illegal mines distribution map
Fig.3  Automatic generation technology of illegal mine distribution map
Fig.4  Square pattern location
出图方法 开采面出图 开采点出图
方法1 441.55 446.38
方法2 81.53 96.17
Tab.1  Mapping efficiency comparison (s)
出图方法 出图时间
方法1 1 954.03 s
方法2 403.38 s
人工出图 3 d
Tab.2  Mapping efficiency comparison
[1] 杨金中, 聂洪峰, 荆青青. 初论全国矿山地质环境现状与存在问题[J]. 国土资源遥感, 2017,29(2):1-7.doi: 10.6046/gtzyyg.2017.02.01.
[1] Yang J Z, Nie H F, Jing Q Q. Preliminary analysis of mine geo-environment status and existing problems in China[J]. Remote Sensing for Land and Resources, 2017,29(2):1-7.doi: 10.6046/gtzyyg.2017.02.01.
[2] 刁明光, 刘芳, 谭专条, 等. 矿山遥感监测解译记录表自动生成方法研究与实现[J]. 国土资源遥感, 2018,30(4):212-217.doi: 10.6046/gtzyyg.2018.04.32.
[2] Diao M G, Liu F, Tan Z T, et al. Research and implement on automatic production method of mine remote sensing monitoring interpretation record table[J]. Remote Sensing for Land and Resources, 2018,30(4):212-217.doi: 10.6046/gtzyyg.2018.04.32.
[3] 杨显华, 黄洁, 田立, 等. 基于高分辨率遥感数据的矿山环境综合治理研究——以冕宁牦牛坪稀土矿为例[J]. 国土资源遥感, 2015,27(4):115-121.doi: 10.6046/gtzyyg.2015.04.18.
[3] Yang X H, Huang J, Tian L, et al. A discussion on comprehensive governance of mine environment based on high resolution remote sensing data:A case of Maoniuping REE deposit,Mianning County[J]. Remote Sensing for Land and Resources, 2015,27(4):115-121.doi: 10.6046/gtzyyg.2015.04.18.
[4] Werner T T, Bebbington A, Gregory G. Assessing impacts of mining:Recent contributions from GIS and remote sensing[J]. The Extractive Industries and Society, 2019,6(3):993-1012.
[5] 杨金中, 赵玉灵. 遥感技术的特点及其在地质矿产调查中的作用[J]. 矿产勘查, 2015,6(5):529-534.
[5] Yang J Z, Zhao Y L. Technical features of remote sensing and its application in the geological survey and mineral resources survey[J]. Mineral Exploration, 2015,6(5):529-534.
[6] 姚维岭, 荆青青, 周英杰, 等. 基于遥感动态监测的山东省矿山地质环境恢复治理典型模式分析[J]. 矿产勘查, 2015,6(5):627-634.
[6] Yao W L, Jing Q Q, Zhou Y J, et al. Analysis on typical pattern of mine geological environment restoration and governance based on remote sensing dynamic monitoring in Shandong[J]. Mineral Exploration, 2015,6(5):627-634.
[7] He D, Le B T, Xiao D, et al. Coal mine area monitoring method by machine learning and multispectral remote sensing images[J]. Infrared Physics & Technology, 2019,103:103070.
[8] Zhang B, Wu D, Zhang L, et al. Application of hyperspectral remote sensing for environment monitoring in mining areas[J]. Environmental Earth Sciences, 2012,65(3):649-658.
[9] Demirel N, Emil M K, Duzgun H S. Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery[J]. International Journal of Coal Geology, 2011,86(1):3-11.
[10] 王立娟, 靳晓, 贾虎军, 等. 基于国产高分卫星数据的矿山环境变化检测[J]. 国土资源遥感, 2018,30(3):151-158.doi: 10.6046/gtzyyg.2018.03.21.
[10] Wang L J, Jin X, Jia H J, et al. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land and Resources, 2018,30(3):151-158.doi: 10.6046/gtzyyg.2018.03.21.
[11] 杨金中, 荆青青, 聂洪峰. 全国矿产资源开发状况遥感监测工作简析[J]. 矿产勘查, 2016,7(2):359-363.
[11] Yang J Z, Jing Q Q, Nie H F. Analysis of the mineral resources development status of remote sensing monitoring in national land[J]. Mineral Exploration, 2016,7(2):359-363.
[12] 杨金中, 秦绪文, 聂洪峰, 等. 全国重点矿区矿山遥感监测综合研究[J]. 中国地质调查, 2015,2(4):24-30.
[12] Yang J Z, Qin X W, Nie H F, et al. Comprehensive research on remote sensing monitoring of the national concentration zones of the important mine[J]. Geological Survey of China, 2015,2(4):24-30.
[13] 方靖. 基于ArcGIS平台的三调初始库快速编制技术研究[J]. 国土资源导刊, 2019,16(2):29-34.
[13] Fang J. The study into rapid compiling of the initial database for the third national land survey based on ArcGIS platform[J]. Land & Resources Herald, 2019,16(2):29-34.
[14] 孙咸磊, 许捍卫, 李文博. ArcPy在长江河道水下空间数据批量处理中的应用[J]. 测绘与空间地理信息, 2015,38(2):97-99.
[14] Sun X L, Xu H W, Li W B. Application of ArcPy in batch processing spatial data of Yangtze River[J]. Geomatics & Spatial Information Technology, 2015,38(2):97-99.
[15] 张康聪. 地理信息系统导论[M]. 北京: 科学出版社, 2019.
[15] Zhang K C. Introduction to geographic information systems[M]. Beijing: Science Press, 2019.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] LIU Zhizhong, SONG Yingxu, YE Runqing. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 192-199.
[5] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[6] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[7] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[8] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[9] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[10] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[11] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[12] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[13] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[14] WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources, 2020, 32(4): 46-52.
[15] WEI Hongyu, ZHAO Yindi, DONG Jihong. Cooling tower detection based on the improved RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech