Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2001, Vol. 13 Issue (3) : 1-7     DOI: 10.6046/gtzyyg.2001.03.01
Review |
A STUDY ON THE DEVELOPMENT OF NEW CLASSIFICATION TECHNOLOGY FOR REDAR REMOTE SENSING IMAGERY
TAN Qu-lin, SHAO Yun
Laboratory of Remote Sensing Information Sciences, Institute of Remote Sensing Application, CAS. Beijing 100101, China
Download: PDF(480 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With more and more information acquired by radar remote sensing the classification technology for radar imagery is heading towards high precision, high correctness and rapidness due to the application of new algorithms, theories, ancillary information and characteristics. In the paper, the development of new classification technology for radar imagery is overviewed. To improve the precision and stability, the authors consider that new characteristics (polarimetric and interferometric information, multi_temporal and geographic information etc.), new theories (like wavelet, fractal and fuzzy theory etc.), and new designed algorithms (such as improved max_likelihood, context Classifier and neural network classifier etc.) should be applied to the classification process of radar imagery.

Keywords  Land desertification      Climate change      Remote sensing      Sanjiangyuan region     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Yun-Ge
LIU Xiao
ZHANG Zhen-De
Cite this article:   
LU Yun-Ge,LIU Xiao,ZHANG Zhen-De. A STUDY ON THE DEVELOPMENT OF NEW CLASSIFICATION TECHNOLOGY FOR REDAR REMOTE SENSING IMAGERY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2001, 13(3): 1-7.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2001.03.01     OR     https://www.gtzyyg.com/EN/Y2001/V13/I3/1


[1] Hellmann M, Cloude S R, Papathanassiou K P. Classification Using Polarimetric and Interferometric SAR Data
[C]. IEEE IGARSS'97,1997: 1411-1413.


[2] 胡召玲,郭达志,盛业华.基于小波纹理信息的星载SAR图像分类研究[J]. 遥感信息, 2000,(4):21-23.


[3] 范湘涛.雷达和TM数据分析与分形研究--以塔西北新构造和肇庆植被识别为例
[D].南京:南京大学地球科学系博士学位论文,1999.


[4] Du L, Lee J S. Fussy Classification of Earth Terrain Covers Using Complex Polarimetric SAR Data[J]. International Journal of Remote Sensing, 1996, 17(4):809-826.


[5] Lee J S, Grunes M R, Kwok R. Classification of Multi-look Polarimetric SAR Imagery Based on Complex Wishart Distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299-2311.


[6] Liu Hao, Shao Yun. An Improved Learning Vector Quantization Neural Network for Land Cover Classification with Multi_temporal Radarsat Images
[C]. IEEE IGRASS'98, 1998,1787-1789.


[7] Shao Y, Guo H D, Liu H, Brisco B. Multifrequency, Multi-polarization GlobeSAR Data for Land Use Mapping
[C]. Proceedings of the First Asia Regional GlobeSAR Regional Workshop, 1994,32-45.


[8] Wang Cuizhen, Guo Huadong. Lithological Classification of Polarimetric SAR Data with Target Decomposition Method[J]. Journal of Remote Sensing, 2000,4(3):219-223.


[9] Tazio Strozzi, Patrik B G Dammert, Urs Wegmuller, et al. Landuse Mapping with ERS SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(2):766-775.


[10] Hirosawa H. Degree of Polarization of Radar Backscatters from Mixed Target[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(2):466-470.


[11] 刘浩,邵芸,王翠珍.多时相Radarsat数据在中国南方水稻分类中的应用[J]. 国土资源遥感,1997,(4):1-6.


[12] Helne Caillol. Fuzzy Random Fields and Unsupevised Image Segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993,31(4):801-810.


[13] 王翠珍.极化SAR数据分析与目标信息提取
[D].北京:中国科学院遥感应用研究所博士学位论文,1999.


[14] Gong Peng. Performance Analyses of Probabilistic Relaxation Methods for Land-Cover Classification[J]. Remote Sens. Environ., 1989, 30:33-42.


[15] Pierce L E, Ulaby F T, Sarabandi K, Dobson M C. Knowledge-Based Classification of Polarimetric SAR Images[J].IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5):1081-1085.


[16] Van Zyl J J, Burnette C E. Bayesian Classification of Polarimetric SAR Images Using Adaptive a Priori Probabilities[J]. International Journal of Remote Sensing, 1992, 13(5):835-840.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech