Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2003, Vol. 15 Issue (2) : 71-74     DOI: 10.6046/gtzyyg.2003.02.17
GIS |
THE DATA ORGANIZATION PATTERN FOR LANDUSE DYNAMIC REMOTE SENSING MONITORING
SHUAI Yan-min1, BAI Xiang-hua1, LIU Su-hong2, ZHU Qi-jiang1, WANG Pei-juan1
1. Research Center for Remote Sensing and Geography Information System, Beijing Normal University, Beijing 100875, China;
2. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(1209 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Remote sensing monitoring provides objective and fast spatial-temporal information for dynamic landuse survey. Nevertheless, there exist no effective method and pattern to organize the data available, which holds back the service and application of this method. In this paper, techniques of segmental coding and logical digital saving are applied to organize data. Transformation matrix is used to organize changed information and SVGtechnique is utilized to extract vector path sets. Such data as vectors and attributes are integrated in an open CTGfile.

Keywords TM image      Remote sensing      Coal self-combustion      Infrared band     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUO Yan-guang
ZHANG Zhi
Cite this article:   
HUO Yan-guang,ZHANG Zhi. THE DATA ORGANIZATION PATTERN FOR LANDUSE DYNAMIC REMOTE SENSING MONITORING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(2): 71-74.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2003.02.17     OR     https://www.gtzyyg.com/EN/Y2003/V15/I2/71


[1] 文正敏.广西巴马县土地适宜性评价模式探讨[J].桂林工学院学报,2001,21(4):376-380.


[2] 尤淑撑,刘顺喜.GPS在土地变更调查中的应用研究[J].测绘通报,2002,(5):1-3.


[3] 王平,史培军.自下而上进行区域自然灾害综合区划的方法研究[J].自然灾害学报,1999,8(2):54-60.


[4] 刘建贵,张兵,郑兰芬,童庆禧.成像光谱数据在城市遥感中的应用研究[J].遥感技术与应用,2000,4(3):224-227.


[5] http://www.w3.org/svg
[DB/OL] .


[6] 徐齐刚,钟珞.快速包络线算法的设计和实现[J].微机发展,2002, (4): 95-97.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech