Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (3) : 16-20     DOI: 10.6046/gtzyyg.2010.03.04
Technology and Methodology |
The Quantification Method in the Estimation Model for Landslide Danger: a Case Study of Yongjia County
 ZHANG Chong, CHEN Xiao-Hua, ZOU Le-Jun, WU Wen-Yuan, SU Nan, KONG Fan-Li
Department of Earth Sciences Zhejiang University, Hangzhou 310027, China
Download: PDF(920 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The quantification of factors for landslide is very complex. Under different circumstances, the contribution of the same factor to landslide may be quite different or even opposite. Based on an analysis of the specific landslide data obtained from Yongjia County, the authors put forward a quantification method for building Neural Network, which is based on the distribution of landslide samples. The results from several estimation models were compared with each other. It is proved that the quantification method advanced by the authors and the Neural Network model based on Supported Vector Machine are the best means. The correctness is up to 84.2%, which is satisfying.  According to the estimation result, the quantification solution and the estimation model based on it are very useful.

Keywords RS      GIS      Grassland      Dynamic changes     
: 

 

 
  P 694

 
Issue Date: 20 September 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
ZHANG Chong, CHEN Xiao-Hua, ZOU Le-Jun, WU Wen-Yuan, SU Nan, KONG Fan-Li. The Quantification Method in the Estimation Model for Landslide Danger: a Case Study of Yongjia County[J]. REMOTE SENSING FOR LAND & RESOURCES,2010, 22(3): 16-20.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.03.04     OR     https://www.gtzyyg.com/EN/Y2010/V22/I3/16

[1]中国岩石力学与工程学会地面岩石工程专业委员会,中国地质学会工程地质专业委员会. 中国典型滑坡[M].北京:科学出版社,1988.

[2]王爱华,周园,殷百寿. 基于GIS的滑坡单因子分析研究[J]. 河北工程大学学报(自然科学版),2007(2):91-93.

[3]Chang K T,Liu J K. Landslide Features Interpreted by Neural Network Method Using a High-resolution Satellite Image and Digital Topographic Data [C]∥Proceedings of 20th ISPRS Congress. Istanbul:2004:574-579.

[4]Biswajeet Pradhan,Saro Lee. Utilization of Optical Remote Sensing Data and GIS Tools for Regional Landslide Hazard Analysis Using an Artificial Neural Network Model[J]. Earth Science Frontiers,2007, 14(6):143-152.

[5]马志江,陈汉林,杨树锋. 基于支持向量机理论的滑坡灾害预测[J]. 浙江大学学报(理学版),2003, 30(5):592-596.

[6]侯敏,贾韶辉,郭兆成. 基于RS与GIS的层次分析法在滑坡危险性评估中的应用[J]. 现代地质,2006, 20(4):668-672.

[7]殷坤龙,张桂荣,龚日祥,等. 浙江省突发性地质灾害预警预报[M].武汉:中国地质大学出版社,2005.

[8]李长江,麻土华,朱兴盛. 降雨型滑坡预报的理论、方法及应用[M].北京: 地质出版社,2008.

[9]张倬元,王士天,王兰生. 工程地质分析原理[M].2版. 北京:地质出版社,1993.

[10]徐增亮. 环境地质学[M]. 青岛:青岛海洋大学出版社,1992.

[11]滑坡文集编委会. 滑坡文集(第四集)[M].北京:中国铁道出版社,1984.

[12]谢五三,田红. 基于支持向量机的安徽汛期降水预测研究[J].气象与减灾,2007(4):7-14.

[1] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[4] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[5] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[8] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[9] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[10] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[11] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[12] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[13] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[14] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[15] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech