Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (3) : 136-142     DOI: 10.6046/gtzyyg.2010.03.27
GIS |
The Design and Realization of the Early Warning System for Regional Grain Production Safety Based on ArcGIS Engine
LI Zhi-bin 1, 2, CHEN You-qi 1, 2, YAO Yan-min 1, 2, SHI Shu-qin 3, HE Ying-bin 1, 2
1.Key Laboratory of Resources Remote-Sensing and Digital Agriculture of Ministry of Agriculture, Beijing 100081, China; 2.Institute of Agricultural Resource and Regional Planning,Chinese Academy of Agricultural Science, Beijing 100081, China;3.Tianjin Polytechnic University, Tianjin 300387, China
Download: PDF(1014 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The structure and function of the early warning system for regional grain production safety on the basis of ArcGIS Engine are described in this paper, and a model for grain production safety pre-warning is proposed. With Northeast China as an example, the authors carried out an analysis and appraisal of grain production safety based on the system. The result shows that the regional early warning system for grain production safety on the basis of GIS can realize the effective monitoring of regional grain-production and achieve the aim of pre-warning of grain production safety. Hence it has certain theoretical value and practical meaning in guaranteeing the regional grain production safety.

 

Keywords Landsat      Remote sensing technique      Water quality      The Polluted zones      The Yangtze River     
: 

 

 
  P 208

 
Issue Date: 20 September 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
LI Zhi-Bin, CHEN You-Qi, YAO Yan-Min, SHI Shu-Qin, HE Ying-Bin. The Design and Realization of the Early Warning System for Regional Grain Production Safety Based on ArcGIS Engine[J]. REMOTE SENSING FOR LAND & RESOURCES,2010, 22(3): 136-142.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.03.27     OR     https://www.gtzyyg.com/EN/Y2010/V22/I3/136

[1]张伟红,赵勇胜,邸志强,等.基于ArcGIS Engine的地下水资源及其地质环境信息系统设计与实现[J].吉林大学学报(地球科学版),2006,36(4):574-577.

[2]冷匀法,谢高地,齐文虎,等.农业资源高效利用管理决策支持系统[J].资源科学,1998,20(5):70-75.

[3]周治国,曹卫星,朱艳,等.基于GIS的作物生产管理信息系统[J].农业工程学报,2005,21(1):114-118.

[4]李德任,杨海峰,赵双明,等.基于GIS的国民经济动员分析决策系统设计[J].武汉大学学报(信息科学版),2004,29(4):283-286.

[5]蔡运龙,傅泽强,戴尔阜.区域最小人均耕地面积与耕地资源调控[J].地理学报,2002, 57(2):127-134.

[6]李晶,任志远,周自翔.区域粮食安全性分析与预测——以陕西省关中地区为例[J].资源科学,2005,27(4):89-94.

[7]李晓青,谢炳庚,戴爱德,等.湖南省耕地压力现状分析及趋势预测[J].经济地理,2003,23(4):513-515.

[8]葛向东,彭补拙,濮励杰,等.耕地总量动态平衡的监测和预警研究[J].自然资源学报,2002,17(1):35-41.

[9]葛向东,张侠,濮励杰,等.江苏锡山市耕地预警系统研究[J].南京大学学报(自然科学),2002,38(4):532-538.

[10]朱德举.土地评价[M].北京:中国大地出版社,2002.

[11]徐盛荣.土地资源评价[M].北京:中国农业出版社,1995.

[12]石淑芹,陈佑启,姚艳敏,等. 耕地变化对粮食生产能力的影像评价[J].资源科学,2007,29(5):143-149.

[13]石淑芹,陈佑启,姚艳敏,等.东北地区耕地自然质量和利用质量评价[J].资源科学,2008,30(3):378-384.

[14]李鹏,王玉斌,谭向勇.东北地区粮食生产与贸易分析[J].中国农业大学学报(社会科学版),2006,(1):57-62.

[15]张勇,曾澜,张雪,等.基于C/S模式的粮食供需平衡监测预警系统[J].计算机工程,2005,31(2):214-218.

[16]姚艳敏,王立刚,陈仲新,等.区域农牧业可持续发展决策支持系统研究[J].地域研究与开发,2007,26(2):112-116.

[1] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[2] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[3] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[4] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[5] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[6] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[7] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[8] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[9] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[10] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[11] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[12] Jing LU, Xujiao ZHANG, Peisheng YE, Hang WU, Tao WANG. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land & Resources, 2020, 32(1): 169-175.
[13] Xuewen XING, Song LIU, Kaijun QIAN. Study of relationship between thickness of oil slicks and band reflectance of Landsat TM/ETM[J]. Remote Sensing for Land & Resources, 2019, 31(4): 69-78.
[14] Qi CAO, Manjiang SHI, Liang ZHOU, Ting WANG, Lijun PENG, Shilei ZHENG. Study of the response characteristics of thermal environment with spatial and temporal changes of bare land in the mountain city[J]. Remote Sensing for Land & Resources, 2019, 31(4): 190-198.
[15] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech