Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 18-26     DOI: 10.6046/zrzyyg.2020346
|
A hierarchical spatial-temporal fusion model
ZHANG Aizhu1,2(), WANG Wei1, ZHENG Xiongwei3, YAO Yanjuan4, SUN Genyun1,2(), XIN Lei5, WANG Ning5, HU Guang6
1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
2. Laboratory for Marine Resources Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237,China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083,China
4. Satellite Environment Center, Ministry of Environmental protection of China, Beijing 100094, China
5. North China Sea Marine Forecasting Center of State Oceanic Administration, Qingdao 266061,China
6. Wuhan SunMap RS Techology Co., Ltd., Wuhan 430223, China
Download: PDF(6774 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The temporal resolution of high spatial resolution remote sensing data can be effectively improved by spatio-temporal fusion of remote sensing data. However, the most widely used spatial and temporal adaptive reflectance fusion model (STARFM) fails to achieve highly accurate prediction effects for areas with abrupt changes at present. Given this, this paper proposed a hierarchical spatial-temporal fusion model (H-STFM). In this model, the target pixels to be predicted are divided into pixels with phenological change and pixels with abrupt changes, which are predicted using linear regression and weighted filtering methods, respectively. Then the prediction results of the two types of pixels are fused using an optimized time weighted function to form the final prediction map. The H-STFM proposed in this paper was qualitatively and quantitatively assessed using two sets of medium-resolution remote sensing images from moderate resolution imaging spectrometer (MODIS) and Landsat satellite. As indicated by the experiment results, H-STFM is significantly superior to STARFM in terms of structural similarity and relative dimensionless global error.

Keywords spatio-temporal fusion      hierarchical      surface reflectance      Landsat      MODIS     
ZTFLH:  TP753  
Corresponding Authors: SUN Genyun     E-mail: zhangaizhu789@163.com;genyunsun@163.com
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Aizhu ZHANG
Wei WANG
Xiongwei ZHENG
Yanjuan YAO
Genyun SUN
Lei XIN
Ning WANG
Guang HU
Cite this article:   
Aizhu ZHANG,Wei WANG,Xiongwei ZHENG, et al. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020346     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/18
Fig.1  Algorithm flowchart
Fig.2  Superpixel-based change pixel filtering
Fig.3  Images of MODIS surface reflectance and Landsat surface reflectance of data set 1
Fig.4  Images of MODIS surface reflectance and Landsat surface reflectance of data set 2
Fig.5  Data set 1 prediction image
Fig.6  Scatter plot of the observed and predicted values of data set 1
方法 AAD VOE SSIM ERGAS
绿 近红 绿 近红 绿 近红
STARFM 67.687 9 89.006 3 315.858 1 91.652 2 130.023 3 414.607 0 0.623 5 0.522 3 0.120 0 1.287 4
ESTARFM 37.551 1 34.454 0 93.441 0 47.359 1 45.866 2 117.750 0 0.845 5 0.845 8 0.901 5 0.493 9
H-STFM 36.583 0 32.028 4 102.912 3 45.576 2 41.942 2 114.760 6 0.856 4 0.856 5 0.909 3 0.455 5
Tab.1  Quantitative evaluation results of data set 1
Fig.7  Data set 2 prediction image
Fig.8  Scatter plot of the observed and predicted values of data set 2
方法 AAD VOE SSIM ERGAS
绿 近红 绿 近红 绿 近红
STARFM 7.316 1 6.309 0 5.725 9 3.293 7 2.118 0 3.319 7 0.916 5 0.956 8 0.980 1 1.504 3
ESTARFM 1.256 7 4.596 6 12.557 9 1.747 0 2.267 9 2.919 5 0.997 5 0.983 9 0.948 4 1.178 0
H-STFM 1.862 4 1.049 6 4.151 1 1.132 3 1.140 8 1.680 9 0.995 3 0.998 6 0.992 0 0.496 6
Tab.2  Quantitative evaluation results of data set 2
[1] 邬明权, 牛铮, 王长耀. 多源遥感数据时空融合模型应用分析[J]. 地球信息科学学报, 2014, 16(5):776-783.
doi: 10.3724/SP.J.1047.2014.00776
[1] Wu M Q, Niu Z, Wang C Y. Assessing the accuracy of spatial and temporal image fusion model of complex area in south China[J]. Journal of Geo-Information Science, 2014, 16(5):776-783.
[2] Hilker T, Wulder M A, Coops N C, et al. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model[J]. Remote Sensing of Environment, 2009, 113(9):1988-1999.
doi: 10.1016/j.rse.2009.05.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709001709
[3] Dong T F, Liu J G, Qian B D, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 49:63-74.
doi: 10.1016/j.jag.2016.02.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243416300137
[4] Shen H F, Huang L W, Zhang L P, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data:A 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172:109-125.
doi: 10.1016/j.rse.2015.11.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715301930
[5] Weng Q H, Fu P, Gao F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J]. Remote Sensing of Environment, 2014, 145:55-67.
doi: 10.1016/j.rse.2014.02.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714000479
[6] Kong F J, Li X B, Wang H, et al. Land cover classification based on fused data from GF-1 and MODIS NDVI time series[J]. Remote Sensing, 2016, 8:741.
doi: 10.3390/rs8090741 url: http://www.mdpi.com/2072-4292/8/9/741
[7] Liu H, Weng Q H. Enhancing temporal resolution of satellite imagery for public health studies:A case study of West Nile Virus outbreak in Los Angeles in 2007[J]. Remote Sensing of Environment, 2012, 117:57-71.
doi: 10.1016/j.rse.2011.06.023 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711002835
[8] Wu M, Wu C, Huang W, et al. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery[J]. Information Fusion, 2016, 31:14-25.
doi: 10.1016/j.inffus.2015.12.005 url: https://linkinghub.elsevier.com/retrieve/pii/S1566253515001177
[9] Fu D, Chen B, Wang J, et al. An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model[J]. Remote Sensing, 2013, 5(12):6346-6360.
doi: 10.3390/rs5126346 url: http://www.mdpi.com/2072-4292/5/12/6346
[10] Huang B, Song H. Spatiotemporal reflectance fusion via sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3707-3716.
doi: 10.1109/TGRS.2012.2186638 url: http://ieeexplore.ieee.org/document/6169983/
[11] 黄波, 赵涌泉. 多源卫星遥感影像时空融合研究的现状及展望[J]. 测绘学报, 2017, 46(10):1492-1499.
[11] Huang B, Zhao Y Q. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1492-1499.
[12] Chen B, Chen L, Huang B, et al. Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139:75-87.
doi: 10.1016/j.isprsjprs.2018.02.021 url: https://linkinghub.elsevier.com/retrieve/pii/S092427161830056X
[13] 蔡德文, 牛铮, 王力. 遥感数据时空融合技术在农作物监测中的适应性研究[J]. 遥感技术与应用, 2012, 27(6):927-932.
[13] Cai D W, Niu Z, Wang L. Adaptability research of spatial and temporal remote sensing data fusion technology in crop monitoring[J]. Remote Sensing Technology and Application, 2012, 27(6):927-932.
[14] Ping B, Meng Y, Su F. An enhanced linear spatio-temporal fusion method for blending landsat and MODIS data to synthesize landsat-like imagery[J]. Remote Sensing, 2018, 10(6):881.
doi: 10.3390/rs10060881 url: http://www.mdpi.com/2072-4292/10/6/881
[15] Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
doi: 10.1109/TGRS.2006.872081 url: http://ieeexplore.ieee.org/document/1661809/
[16] Gevaert C M, Garcia-haro F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015,(156):34-44.
[17] Hilker T, Wulder M A, Coops N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8):1613-1627.
doi: 10.1016/j.rse.2009.03.007 url: https://linkinghub.elsevier.com/retrieve/pii/S003442570900087X
[18] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623.
doi: 10.1016/j.rse.2010.05.032 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710001884
[19] Belgiu M, Stein A. Spatiotemporal image fusion in remote sensing[J]. Remote Sensing, 2019, 11(7):818.
doi: 10.3390/rs11070818 url: https://www.mdpi.com/2072-4292/11/7/818
[20] 方帅, 姚振稷, 曹风云. 线性模型的遥感图像时空融合[J]. 中国图象图形学报, 2020, 25(3):579-592.
[20] Fang S, Yao Z J, Cao F Y. Spatio-temporal method of satellite image fusion based on linear model[J]. Journal of Image and Graphics, 2020, 25(3):579-592
[21] Cheng Q, Liu H Q, Shen H F, et al. A spatial and temporal nonlocal filter-based data fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4476-4488.
doi: 10.1109/TGRS.2017.2692802 url: http://ieeexplore.ieee.org/document/7917259/
[22] Wang Q, Atkinson P M. Spatio-temporal fusion for daily Sentinel-2 images[J]. Remote Sensing of Environment, 2018(204):31-42.
[23] 刘慧琴, 吴鹏海, 沈焕锋, 等. 一种基于非局部滤波的遥感时空信息融合方法[J]. 地理与地理信息科学, 2015, 31(4):27-32.
[23] Liu H Q, Wu P H, Shen H F, et al. A spatio-temporal information fusion method based on non-local means filter[J]. Geography and Geo-Information Science, 2015, 31(4):27-32.
[24] Karydas C, Jiang B. Scale optimization in topographic and hydrographic feature mapping using fractal analysis[J]. ISPRS International Journal of Geo-Information, 2020, 9(11):631.
doi: 10.3390/ijgi9110631 url: https://www.mdpi.com/2220-9964/9/11/631
[25] 王茂芝, 徐文皙, 王璐, 等. 高光谱遥感影像端元提取算法研究进展及分类[J]. 遥感技术与应用, 2015, 30(4):616-625.
[25] Wang M Z, Xu W X, Wang L, et al. Research progress on endmember extraction algorithm and its classification of hyperspectral remote sensing imagery[J]. Remote Sensing Technology and Application, 2015, 30(4):616-625.
[26] 刘汉湖, 杨武年, 杨容浩. 高光谱遥感岩矿端元提取与分析方法研究[J]. 岩石矿物学杂志, 2013(2):213-220.
[26] Liu H H, Yang W N, Yang R H. The end-member extraction and analysis method for rocks and minerals using hyperspectral remote sensing image[J]. Acta Petrologica et Mineralogica, 2013(2):213-220.
[1] LI Na, GAN Fuping, DONG Xinfeng, LI Juan, ZHANG Shifan, LI Tongtong. Investigation and applications of rocky desertification based on GF-5 hyperspectral data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 230-235.
[2] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[3] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[4] AN Na, ZHAO Yingying, SUN Yaqin, ZHANG Aizhu, FU Hang, YAO Yanjuan, SUN Genyun. An improved spatio-temporal fusion model for remote sensing images based on singular spectrum analysis[J]. Remote Sensing for Natural Resources, 2023, 35(2): 89-96.
[5] LI Chenhui, HAO Lina, XU Qiang, WANG Yi, YAN Lihua. Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 74-80.
[6] QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
[7] MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America[J]. Remote Sensing for Natural Resources, 2022, 34(4): 203-215.
[8] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[9] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[10] DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34(3): 112-120.
[11] WANG Siyao, ZHAO Chunlei, CHEN Xia, LIU Dan. Remote sensing-based green space evolution in Tangshan and its influence on heat island effect[J]. Remote Sensing for Natural Resources, 2022, 34(2): 168-175.
[12] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[13] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[14] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[15] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech