|
|
|
|
|
|
A hierarchical spatial-temporal fusion model |
ZHANG Aizhu1,2( ), WANG Wei1, ZHENG Xiongwei3, YAO Yanjuan4, SUN Genyun1,2( ), XIN Lei5, WANG Ning5, HU Guang6 |
1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China 2. Laboratory for Marine Resources Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237,China 3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083,China 4. Satellite Environment Center, Ministry of Environmental protection of China, Beijing 100094, China 5. North China Sea Marine Forecasting Center of State Oceanic Administration, Qingdao 266061,China 6. Wuhan SunMap RS Techology Co., Ltd., Wuhan 430223, China |
|
|
Abstract The temporal resolution of high spatial resolution remote sensing data can be effectively improved by spatio-temporal fusion of remote sensing data. However, the most widely used spatial and temporal adaptive reflectance fusion model (STARFM) fails to achieve highly accurate prediction effects for areas with abrupt changes at present. Given this, this paper proposed a hierarchical spatial-temporal fusion model (H-STFM). In this model, the target pixels to be predicted are divided into pixels with phenological change and pixels with abrupt changes, which are predicted using linear regression and weighted filtering methods, respectively. Then the prediction results of the two types of pixels are fused using an optimized time weighted function to form the final prediction map. The H-STFM proposed in this paper was qualitatively and quantitatively assessed using two sets of medium-resolution remote sensing images from moderate resolution imaging spectrometer (MODIS) and Landsat satellite. As indicated by the experiment results, H-STFM is significantly superior to STARFM in terms of structural similarity and relative dimensionless global error.
|
Keywords
spatio-temporal fusion
hierarchical
surface reflectance
Landsat
MODIS
|
|
Corresponding Authors:
SUN Genyun
E-mail: zhangaizhu789@163.com;genyunsun@163.com
|
Issue Date: 24 September 2021
|
|
|
[1] |
邬明权, 牛铮, 王长耀. 多源遥感数据时空融合模型应用分析[J]. 地球信息科学学报, 2014, 16(5):776-783.
doi: 10.3724/SP.J.1047.2014.00776
|
[1] |
Wu M Q, Niu Z, Wang C Y. Assessing the accuracy of spatial and temporal image fusion model of complex area in south China[J]. Journal of Geo-Information Science, 2014, 16(5):776-783.
|
[2] |
Hilker T, Wulder M A, Coops N C, et al. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model[J]. Remote Sensing of Environment, 2009, 113(9):1988-1999.
doi: 10.1016/j.rse.2009.05.011
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709001709
|
[3] |
Dong T F, Liu J G, Qian B D, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 49:63-74.
doi: 10.1016/j.jag.2016.02.001
url: https://linkinghub.elsevier.com/retrieve/pii/S0303243416300137
|
[4] |
Shen H F, Huang L W, Zhang L P, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data:A 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172:109-125.
doi: 10.1016/j.rse.2015.11.005
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715301930
|
[5] |
Weng Q H, Fu P, Gao F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J]. Remote Sensing of Environment, 2014, 145:55-67.
doi: 10.1016/j.rse.2014.02.003
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714000479
|
[6] |
Kong F J, Li X B, Wang H, et al. Land cover classification based on fused data from GF-1 and MODIS NDVI time series[J]. Remote Sensing, 2016, 8:741.
doi: 10.3390/rs8090741
url: http://www.mdpi.com/2072-4292/8/9/741
|
[7] |
Liu H, Weng Q H. Enhancing temporal resolution of satellite imagery for public health studies:A case study of West Nile Virus outbreak in Los Angeles in 2007[J]. Remote Sensing of Environment, 2012, 117:57-71.
doi: 10.1016/j.rse.2011.06.023
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711002835
|
[8] |
Wu M, Wu C, Huang W, et al. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery[J]. Information Fusion, 2016, 31:14-25.
doi: 10.1016/j.inffus.2015.12.005
url: https://linkinghub.elsevier.com/retrieve/pii/S1566253515001177
|
[9] |
Fu D, Chen B, Wang J, et al. An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model[J]. Remote Sensing, 2013, 5(12):6346-6360.
doi: 10.3390/rs5126346
url: http://www.mdpi.com/2072-4292/5/12/6346
|
[10] |
Huang B, Song H. Spatiotemporal reflectance fusion via sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3707-3716.
doi: 10.1109/TGRS.2012.2186638
url: http://ieeexplore.ieee.org/document/6169983/
|
[11] |
黄波, 赵涌泉. 多源卫星遥感影像时空融合研究的现状及展望[J]. 测绘学报, 2017, 46(10):1492-1499.
|
[11] |
Huang B, Zhao Y Q. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1492-1499.
|
[12] |
Chen B, Chen L, Huang B, et al. Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139:75-87.
doi: 10.1016/j.isprsjprs.2018.02.021
url: https://linkinghub.elsevier.com/retrieve/pii/S092427161830056X
|
[13] |
蔡德文, 牛铮, 王力. 遥感数据时空融合技术在农作物监测中的适应性研究[J]. 遥感技术与应用, 2012, 27(6):927-932.
|
[13] |
Cai D W, Niu Z, Wang L. Adaptability research of spatial and temporal remote sensing data fusion technology in crop monitoring[J]. Remote Sensing Technology and Application, 2012, 27(6):927-932.
|
[14] |
Ping B, Meng Y, Su F. An enhanced linear spatio-temporal fusion method for blending landsat and MODIS data to synthesize landsat-like imagery[J]. Remote Sensing, 2018, 10(6):881.
doi: 10.3390/rs10060881
url: http://www.mdpi.com/2072-4292/10/6/881
|
[15] |
Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
doi: 10.1109/TGRS.2006.872081
url: http://ieeexplore.ieee.org/document/1661809/
|
[16] |
Gevaert C M, Garcia-haro F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015,(156):34-44.
|
[17] |
Hilker T, Wulder M A, Coops N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8):1613-1627.
doi: 10.1016/j.rse.2009.03.007
url: https://linkinghub.elsevier.com/retrieve/pii/S003442570900087X
|
[18] |
Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623.
doi: 10.1016/j.rse.2010.05.032
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710001884
|
[19] |
Belgiu M, Stein A. Spatiotemporal image fusion in remote sensing[J]. Remote Sensing, 2019, 11(7):818.
doi: 10.3390/rs11070818
url: https://www.mdpi.com/2072-4292/11/7/818
|
[20] |
方帅, 姚振稷, 曹风云. 线性模型的遥感图像时空融合[J]. 中国图象图形学报, 2020, 25(3):579-592.
|
[20] |
Fang S, Yao Z J, Cao F Y. Spatio-temporal method of satellite image fusion based on linear model[J]. Journal of Image and Graphics, 2020, 25(3):579-592
|
[21] |
Cheng Q, Liu H Q, Shen H F, et al. A spatial and temporal nonlocal filter-based data fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4476-4488.
doi: 10.1109/TGRS.2017.2692802
url: http://ieeexplore.ieee.org/document/7917259/
|
[22] |
Wang Q, Atkinson P M. Spatio-temporal fusion for daily Sentinel-2 images[J]. Remote Sensing of Environment, 2018(204):31-42.
|
[23] |
刘慧琴, 吴鹏海, 沈焕锋, 等. 一种基于非局部滤波的遥感时空信息融合方法[J]. 地理与地理信息科学, 2015, 31(4):27-32.
|
[23] |
Liu H Q, Wu P H, Shen H F, et al. A spatio-temporal information fusion method based on non-local means filter[J]. Geography and Geo-Information Science, 2015, 31(4):27-32.
|
[24] |
Karydas C, Jiang B. Scale optimization in topographic and hydrographic feature mapping using fractal analysis[J]. ISPRS International Journal of Geo-Information, 2020, 9(11):631.
doi: 10.3390/ijgi9110631
url: https://www.mdpi.com/2220-9964/9/11/631
|
[25] |
王茂芝, 徐文皙, 王璐, 等. 高光谱遥感影像端元提取算法研究进展及分类[J]. 遥感技术与应用, 2015, 30(4):616-625.
|
[25] |
Wang M Z, Xu W X, Wang L, et al. Research progress on endmember extraction algorithm and its classification of hyperspectral remote sensing imagery[J]. Remote Sensing Technology and Application, 2015, 30(4):616-625.
|
[26] |
刘汉湖, 杨武年, 杨容浩. 高光谱遥感岩矿端元提取与分析方法研究[J]. 岩石矿物学杂志, 2013(2):213-220.
|
[26] |
Liu H H, Yang W N, Yang R H. The end-member extraction and analysis method for rocks and minerals using hyperspectral remote sensing image[J]. Acta Petrologica et Mineralogica, 2013(2):213-220.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|