Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (s1) : 159-162     DOI: 10.6046/gtzyyg.2010.s1.33
Technology Application |

A Remote Sensing Analysis of the Variation of Main Surface Geological Environmental Elements in Caofeidian
FAN Su-ying 1,2, XU Wen-jia 1,2,3, LI Ji-na 1,2
1.Center of Hebei Remote Sensing, Shijiazhuang  050021, China; 2. Institute of Hydrogeology Survey of Hebei Province ,Shijiazhuang  050021, China; 3. Institute of Geological Survey of Hebei Province, Shijiazhuang  050081, China
Download: PDF(779 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Taking Caofeidian area in Hebei Province as the study area and based on the remote sensing data of Landsat-5 TM

acquired in 1993 and ALOS acquired in 2007, the authors analyzed the temporal and spatial variations of surface geological

environmental elements. Some conclusions have been reached:(1) The areas of the delta wetland,agriculture land of non-

wetland and residential and industrial land were 32.3×104 hm2,20.6×104 hm2 and 4.21×104 hm2 in 1993, and 27.7×104 hm2

,21.8×104 hm2 and 6.8 ×104 hm2 in 2007, respectively. During the 14 years,the area of wetland decreased by 77.3%,while

the agriculture land of non-wetland and residential and industrial land increased by 5.6% and 61.6% respectively. (2) From

1993 to 2007, the coastline varied obviously. The eastern coastline invaded the mainland with the largest invasive

distance up to 500 m. On the contrary,the western coastline moved back to the sea with the largest retreated distance up

to 1 000 m.

Keywords Kernel function      Remote sensing      Min-distance classification      Multi-band     
:     
  TP 79  
Issue Date: 13 November 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Wei-Qiang
HU Jing
XIA De-Shen
Cite this article:   
LIU Wei-Qiang,HU Jing,XIA De-Shen.
A Remote Sensing Analysis of the Variation of Main Surface Geological Environmental Elements in Caofeidian[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 159-162.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.s1.33     OR     https://www.gtzyyg.com/EN/Y2010/V22/Is1/159

[1]钟新宝,康慧. 渤海湾海岸带近现代地质环境变化[J]. 第四纪研究,2002,22(2):131-135.


[2]姜义,李建芬,康慧,等. 渤海湾西岸近百年来海岸线变迁遥感分析[J]. 国土资源遥感,2003 (4):54-58.


[3]王宏,宋美钰,王福,等. 渤海湾西岸泥质海岸带地质环境现状与趋势预测[J]. 地质通报,2008,27(6):726-738.


[4]孙晓明,吴登定,肖国强,等. 环渤海地区地下水资源与环境地质若干问题探讨[J]. 地质调查与研究,2006,29(1):47-56.


[5]李琳,李昌存. 唐山曹妃甸工业区区域地质环境分析[J]. 资源与产业,2008,10(1):25-27.


[6]张晓龙,李培英,李萍,等. 中国滨海湿地研究现状与展望[J]. 海洋科学进展,2005,23(1):87-95.


[7]安娜,高乃云,刘长娥. 中国湿地的退化原因、评价及保护[J]. 生态学杂志,2008, 27(5):821-828.


[8]吕金福,肖荣寰,介冬梅,等. 莫莫格湖泊群近50年来的环境变化[J]. 地理科学,2000,20(3): 279-283.


[9]姜杰. 遥感技术在海岸带海洋地质环境综合调查中的应用[J]. 海洋地质动态,2006,22(5):30-32.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech