Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (4) : 157-162     DOI: 10.6046/gtzyyg.2012.04.26
Technology Application |
Quantitative Inversion of Soil Potassium Content by Using Hyperspectral Reflectance
HU Fang1,2, LIN Qi-zhong1, WANG Qin-jun1, WANG Ya-jun1,2
1. Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(4497 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to predict the soil potassium content more quickly and accurately,this paper studied the relationship between soil spectrum and soil potassium content based on soil hyper-spectrum and chemical element analytical results. Based on preprocessing, the authors extracted the original soil spectrum and four parameters of spectra, i.e., reflectance spectra, first derivative reflectance spectra, inverse-log spectra and band depth, so as to establish the prediction model for potassium content by PLSR. The model was tested, and the results indicate that band depth is the optimum parameter for inverting soil potassium content, with a minimum modeling correlation coefficient of 0.85 and maximum RMSE of 0.1. This research shows that, as a non-destructive method, the soil spectrum with high spectral resolution in the whole range has the potential for the rapid simultaneous prediction of potassium concentration.
Keywords FY-3/MERSI      land surface temperature (LST)      retrieval      thematic mapping      MATLAB     
: 

TP 79

 
Issue Date: 13 November 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG He-qun
YIN Qiu
ZHOU Hong-mei
GE Wei-qiang
Cite this article:   
YANG He-qun,YIN Qiu,ZHOU Hong-mei, et al. Quantitative Inversion of Soil Potassium Content by Using Hyperspectral Reflectance[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 157-162.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.04.26     OR     https://www.gtzyyg.com/EN/Y2012/V24/I4/157
[1] Uphoff N,Ball A S,Fernandes E C M,et al.Biological Approaches to Sustainable Soil Systems[M].London:Taylor & Francis Group,LLC,2006:3-12.

[2] 孙波,解宪丽.全球变化下土壤功能演变的响应和反馈[J].地球科学进展,2005,20(8):903-909.

Sun B,Xie X L.Response and Feedback of Soil Function Evolvement to Global Change[J].Advance in Earth Science,2005,20(8):903-909(in Chinese with English Abstract ).

[3] 赵其国.提升对土壤认识,创新现代土壤学[J].土壤学报,2008,45(5):771-777.

Zhao Q G.Improving Knowledge of Soil,Innovating Modern Pedology[J].Acta Pedologica Sinica,2008,45(5):771-777(in Chinese with English Abstract).

[4] 从日环,李小坤,鲁剑巍.土壤钾素转化的影响因素及其研究进展[J].华中农业大学学报,2007,26(6):907-913.

Cong R H,Li X K,Lu J W.Advances in Research on Influence Factors of Soil Potassium Transformation[J].Journal of Huazhong Agricultural University,2007,26(6):907-913(in Chinese with English Abstract).

[5] Lagacherie P,Baret F,Feret J B,et al.Estimation of Soil Clay and Calcium Carbonate Using Laboratory,Field and Airborne Hyperspectral Measurements[J].Remote Sensing of Environment,2008,112(3):825-835.

[6] 王璐,蔺启忠,贾东,等.基于反射光谱预测土壤重金属元素含量的研究[J].遥感学报,2007,11(6):906-913.

Wang L,Lin Q Z,Jia D,et al.Study on the Prediction of Soil Heavy Metal Elements Content Based on Reflectance Spectra[J].Journal of Remote Sensing,2007,11(6):906-913(in Chinese with English Abstract).

[7] Liu H J,Zhang Y Z,Zhang B.Novel Hyperspectral Reflectance Models for Estimating Black-soil Organic Matter in Northeast China[J].Environ Monit Access,2009,154(1/4):147-154.

[8] Liu W D,Baret F,Gu X F,et al.Relating Soil Surface Moisture to Reflectance[J].Remote Sensing of Environment,2002(81):238-246.

[9] Farifteh J,Van der Meer F,Atzberger C,et al.Quantitative Analysis of Salt-affected Soil Reflectance Spectra:A Comparison of Two Adaptive Methods(PLSR and ANN)[J].Remote Sensing of Environment,2007,110(1):59-78.

[10] Chang C W,Laird D A.Near-infrared Reflectance Spectroscopic Analysis of Soil C and N[J].Soil Science,2002,167(2):110-116.

[11] 徐明星,吴绍华,周生路,等.重金属含量的高光谱建模反演:考古土壤中的应用[J].红外与毫米波学报,2011,30(2):109-114.

Xu M X,Wu S H,Zhou S L,et al.Hyperspectral Reflectance Model for Retrieving Heavy Metal Content:Application in the Archaeological Soil[J].Journal of Infrared and Millimeter Waves,2011,30(2):109-114(in Chinese with English Abstract).

[12] 邬登巍,吴昀昭,马宏瑞.基于中红外漫反射光谱的土壤重金属元素含量预测研究[J].光谱学与光谱分析,2010,30(6):1498-1502.

Wu D W,Wu Y Z,Ma H R.Study on the Brediction of Soil Heavy Metal Elements Content Based on Mid-infrared Diffuse Reflectance Spectra[J].Spectroscopy and Spectral Analysis,2010,30(6):1498-1502(in Chinese with English Abstract).

[13] Tan D S,Jin J Y,Huang S W,et al.Effect of Long-term Application of K Fertilizer and Wheat Straw to Soil on Crop Yield and Soil K Under Different Planting Systems[J].Agricultural Sciences in China,2007,6(2):200-207.

[14] 燕守勋,张兵,赵永超,等.矿物与岩石的可见—近红外光谱特性综述[J].遥感技术与应用,2003,18(4):191-201.

Yan S X,Zhang B,Zhao Y C,et al.Summarizing the VIS-NIR Spectra of Minerals and Rocks[J].Remote Sensing Technology and Application,2003,18(4):191-201(in Chinese with English Abstract).

[15] 吴昀昭.南京城郊农业土壤重金属污染的遥感地球化学基础研究[D].南京:南京大学,2005.

Wu Y Z.Heavy Metal Pollution in Suburban Soils of the Nanjing Area:A Feasibility Study of Remote Sensing Geochemistry[D].Nanjing:Nanjing University,2005(in Chinese with English Abstract).

[16] 徐永明,蔺启忠,黄秀华,等.利用可见光/进红外反射光谱估算土壤总氮含量的实验研究[J].地理与地理信息科学,2005,21(1):19-22.

Xu Y M,Lin Q Z,Huang X H,et al.Experimental Study on Total Nitrogen Concentration in Soil by VNIR Reflectance Spectrum[J].Geography and Geo-information Science,2005,21(1):19-22(in Chinese with English Abstract).

[17] 何挺,王静,林宗坚,等.土壤有机质光谱特征研究[J] ,武汉大学学报:信息科学版,2006,31(11):975-979.

He T,Wang J,Lin Z J,et al.Spectral Features of Soil Organic Matter[J].Geomatics and Information Science of Wuhan University,2006,31(11):975-979(in Chinese with English Abstract).

[18] 王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.

Wang H W.Partial Least Squares Regression Methods and Applications[M].Beijing:National Defence Industry Press,1999(in Chinese).
[1] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[2] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[3] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[4] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[5] YANG Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model[J]. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
[6] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
[7] Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
[8] Yun GE, Shunliang JIANG, Famao YE, Changlong JIANG, Ying CHEN, Yiling TANG. Aggregating CNN features for remote sensing image retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(1): 49-57.
[9] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[10] Yiqun HU, Shaoguang ZHOU, Shun YUE, Xiaoqing LIU. Remote sensing image retrieval based on sparse local invariant features[J]. Remote Sensing for Land & Resources, 2018, 30(2): 38-44.
[11] YANG Ping, LI Yikun, HU Yuxi, YANG Shuwen. Remote sensing image retrieval based on tolerance granular computing theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 43-47.
[12] HU Yuxi, LI Yikun, YANG Ping. Retrieving of remote sensing images based on content-sensitive Bayesian networks and direction relations[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 70-76.
[13] LI Feng, LIANG Handong, ZHAO Xiaoping, BAI Jiangwei, CUI Yukun. Remote sensing monitoring and assessment of fire-fighting effects in Wuda coal field,Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 217-223.
[14] WEN Lujun, PENG Wenfu, YANG Huarong, WANG Huaiying, DONG Lijun, SHANG Xue. An analysis of land surface temperature (LST) and its influencing factors in summer in western Sichuan Plateau: A case study of Xichang City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 207-214.
[15] LI Wei, CHEN Xiuwan, PENG Xuefeng, XIAO Han. GNSS-R technique for soil moisture estimation: Framework and software implementation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 213-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech