|
|
|
|
|
|
Aggregating CNN features for remote sensing image retrieval |
Yun GE1,2, Shunliang JIANG1, Famao YE1( ), Changlong JIANG2, Ying CHEN2, Yiling TANG1 |
1.Information Engineering School, Nanchang University, Nanchang 330031, China 2.Software School, Nanchang Hangkong University, Nanchang 330063, China |
|
|
Abstract In the high-resolution remote sensing image retrieval, it is difficult for hand-crafted features to describe the images accurately. Thus a method based on aggregating convolutional neural network(CNN) features is proposed to improve the feature representation. First, the parameters from CNN pre-trained on large-scale datasets are transferred for remote sensing images. Given input images with different sizes, the CNN features which represent local information are extracted. Then, average pooling with different pooling region sizes and bag of visual words (BoVW) are adopted to aggregate the CNN features. Pooling features and BoVW features are obtained accordingly. Finally, the above two aggregation features are utilized for remote sensing image retrieval. Experimental results demonstrate that the input image with reasonable size is capable of improving the feature representation. When the pooling region size is between 60% and 80% of the feature map, the vast majority of the results of pooling features are superior to those of the traditional average pooling method. The optimal average normalized modified retrieval rank values of pooling feature and BoVW feature are 27.31% and 21.51% lower than those of hand-crafted feature. Therefore, both the average pooling and BoVW can improve the remote sensing image retrieval performance efficiently.
|
Keywords
remote sensing image
retrieval
convolutional neural network
average pooling
bag of visual words
|
|
Corresponding Authors:
Famao YE
E-mail: yefamao@ncu.edu.cn
|
Issue Date: 15 March 2019
|
|
|
[1] |
朱佳丽, 李士进, 万定生 , 等. 基于特征选择和半监督学习的遥感图像检索[J]. 中国图象图形学报, 2011,16(8):1474-1482.
doi: 10.11834/jig.20110808
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGTB201108019.htm
|
[1] |
Zhu J L, Li S J, Wan D S , et al. Content-based remote sensing image retrieval based on feature selection and semi-supervised learning[J]. Journal of Image and Graphics, 2011,16(8):1474-1482.
|
[2] |
Demir B, Bruzzone L . A novel active learning method in relevance feedback for content-based remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(5):2323-2334.
doi: 10.1109/TGRS.2014.2358804
url: http://ieeexplore.ieee.org/document/6920022/
|
[3] |
Aptoula E . Remote sensing image retrieval with global morphological texture descriptors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(5):3023-3034.
doi: 10.1109/TGRS.2013.2268736
url: http://ieeexplore.ieee.org/document/6557520/
|
[4] |
陆丽珍, 刘仁义, 刘南 . 一种融合颜色和纹理特征的遥感图像检索方法[J]. 中国图象图形学报, 2004,9(3):328-333.
doi: 10.3969/j.issn.1006-8961.2004.03.013
url: http://www.cqvip.com/qk/90287X/200403/9525218.html
|
[4] |
Lu L Z, Liu R Y, Liu N . Remote sensing image retrieval using color and texture fused features[J]. Journal of Image and Graphics, 2004,9(3):328-333.
|
[5] |
Yang Y, Newsam S . Geographic image retrieval using local invariant features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(2):818-832.
doi: 10.1109/TGRS.2012.2205158
url: http://ieeexplore.ieee.org/document/6257473/
|
[6] |
Du Z X, Li X L, Lu X Q . Local structure learning in high resolution remote sensing image retrieval[J].Neurocomputing, 2016(207):813-822.
doi: 10.1016/j.neucom.2016.05.061
url: http://www.sciencedirect.com/science/article/pii/S0925231216305148
|
[7] |
Babenko A, Slesarev A, Chigorin A, et al. Neural codes for image retrieval [C]//Proceedings of European Conference on Computer Vision.Springer, 2014: 584-599.
|
[8] |
Ng J Y, Yang F, Davis L S. Exploiting local features from deep networks for image [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition workshops.IEEE, 2015: 53-61.
|
[9] |
Babenko A, Lempitsky V. Aggregating deep convolutional features for image retrieval [C]//Proceedings of IEEE International Conference on Computer Vision.IEEE, 2015: 1269-1277.
|
[10] |
周飞燕, 金林鹏, 董军 . 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6):1229-1251.
doi: 10.11897/SP.J.1016.2017.01229
url: http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm
|
[10] |
Zhou F Y, Jin L P, Dong J . Review of convolutional neural network[J]. Chinese Journal of Computers, 2017,40(6):1229-1251.
|
[11] |
张洪群, 刘雪莹, 杨森 , 等. 深度学习的半监督遥感图像检索[J]. 遥感学报, 2017,21(3):406-414.
doi: 10.11834/jrs.20176105
url: http://d.wanfangdata.com.cn/Periodical/ygxb201703008
|
[11] |
Zhang H Q, Liu X Y, Yang S , et al. Retrieval of remote sensing images based on semisupervised deep learning[J].Journal of Remote Sensing, 21(3):406-414.
|
[12] |
Napoletano P . Visual descriptors for content-based retrieval of remote sensing images[J]. International Journal of Remote Sensing, 2018,39(5):1343-1376.
doi: 10.1080/01431161.2017.1399472
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1399472
|
[13] |
Zhou W X, Newsam S, Li C , et al. Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval[J]. Remote Sensing, 2017,9(5):489.
doi: 10.3390/rs9050489
url: http://www.mdpi.com/2072-4292/9/5/489
|
[14] |
Hu F, Tong X Y, Xia G S, et al. Delving into deep representations for remote sensing image retrieval [C]//Proceedings of IEEE International Conference on Signal Processing.IEEE, 2016: 198-203.
|
[15] |
Simonyan K ,Zisserman A.Very deep convolutional networks for large-scale image recognition[EB/OL]..
url: arXiv.https://arxiv.org/pdf/1409. 1556.pdf
|
[16] |
Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015: 1-9.
|
[17] |
Hu F, Xia G S, Hu J W , et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015,7(11):14680-14707.
doi: 10.3390/rs71114680
url: http://www.mdpi.com/2072-4292/7/11/14680
|
[18] |
Vedaldi A, Lenc K. MatConvNet:convolutional neural networks for MATLAB [C]//Proceedings of 23rd ACM International Conference on Multimedia.ACM, 2015: 689-692.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|