Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (1) : 7-12     DOI: 10.6046/gtzyyg.2013.01.02
Review |
Advances in the study of Ulvapolifera monitoring with remote sensing
YE Na1, JIA Jianjun2, TIAN Jing3, SU Hongbo3, LUO Weimin1, ZHANG Feng1, XIAO Kang1
1. East China Sea Data & Information Service of State Oceanic Administration, Shanghai 200137, China;
2. Headquarters of China Marine Surveillance, Beijing 100860, China;
3. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(722 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The massive bloom of the green macroalgae Ulvaprolifera is called "green tide". The "green tide" event frequently happens in the world and is known as an oceanic disaster due to its bad effects on the marine ecological environment, coastal scene, seashore tourism and water sports. Remote sensing has the advantages over the conventional methods in oceanic monitoring because of its great capabilities of large-area, multi-resolution, multi-spectrum, quick and dynamic observations. Remote sensing has become a necessary method in the study of the origin, spatial pattern, evolution, size and movement of "green tide". At present, 3 main approaches detecting Ulvaprolifera have been developed, which are single band threshold image segmentation method, multi-band ratio method and radiation transmission model method. The multi-band ratio method is most widely used, which includes two-band ratio algorithm, normalized differential vegetation index, floating algae index and normalized difference algae index. The method of radiation transmission model is mainly used to monitor Ulvaprolifera suspended in water, and its study is just in the initial stage. Further researches on distinguishing the difference between the spectrum of Ulvaprolifera and other type of floating algae, monitoring Ulvaprolifera suspended in water, solving the contradiction between the deficiency of monitoring capability and the needs of users are the directions of Ulvaprolifera monitoring in the future.

Keywords remote sensing interpretation      wavelet analysis      Wudang area      ductile shear zone     
:  TP79  
Issue Date: 21 February 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Feng-ming
HE Long-qing
WANG Lei
Cite this article:   
YU Feng-ming,HE Long-qing,WANG Lei. Advances in the study of Ulvapolifera monitoring with remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 7-12.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.01.02     OR     https://www.gtzyyg.com/EN/Y2013/V25/I1/7
[1] 李三妹,李亚君,董海鹰,等.浅析卫星遥感在黄海浒苔监测中的应用[J].应用气象学报,2010,21(1):76-82. Li S M,Li Y J,Dong H Y,et al.Satellite remote sensing application to Enteromorpha prolifera monitoring in the Yellow Sea[J].Journal of Applied Meteorological Science,2012,21(1):76-82.
[2] Hu C M.A novel ocean color index to detect floating algae in the global oceans[J].Remote Sensing of Environment,2009,113(10):2118-2129.
[3] 邢前国,郑向阳,施平,等.基于多源、多时相遥感影像的黄、东海绿潮影响区检测[J].光谱学与光谱分析,2011,31(6):1644-1647. Xing Q G,Zheng X Y,Shi P,et al.Monitoring"green tide" in the Yellow Sea and the East China Sea using multi-temporal and multi-source remote sensing images[J].Spectroscopy and Spectral Analysis,2011,31(6):1644-1647.
[4] 王国伟,李继龙,杨文波,等.利用MODIS和RADARSAT数据对浒苔的监测研究[J].海洋湖沼通报,2010(4):1-8. Wang G W,Li J L,Yang W B,et al.A primary study of Enteromorpha prolifra using the MODIS and RADARSAT[J].Transactions of Oceanology and Limnology,2010(4):1-8.
[5] 宋宁而,王琪.从国外浒苔治理经验看海洋环境应急管理社会组织的重要性[J].海洋开发与管理,2010,27(9):33-40. Song N E,Wang Q.The importance of the social organization of marine environmental emergency management according to the administering experience of Enteromorpha prolifra[J].Ocean Development and Management,2010,27(9):33-40.
[6] Schramm W,Nienhuis P H,FletcherR L.The occurrence of"green tides":A review,in marine benthic vegetation:Recent changes and the effects of Eutrophication[M]//Schramm W,NienhuisPH.Berlin:Springer,1996:7-43.
[7] Wang X H,Li L,Bao X,et al.Economic cost of an algae bloom cleanup in China's 2008 olympic sailing venue[J],Eos,American Geophysical Union Transactions,2009,90(28):238-239.
[8] 谢宏全,卢霞,周立,等.基于连云港海域浒苔光谱的高光谱特征参数分析[J].安徽农业科学,2011,39(27):16964-16966. Xie H Q,Lu X,Zhou L,et al.Analysis of hyperspectal character parameters based on the reflectance spectra of Enteromorpha prolifra in Lianyungang sea area[J].Journal of Anhui Science,2011,39(27):16964-16966.
[9] 张娟.浒苔遥感监测方法研究及软件实现——以青岛奥帆赛场及周边海域为例[D].成都:电子科技大学,2009. Zhang J.The method and the software implementation of monitoring macroalgae by remote sensing[D].Chengdu: University of Electronic Science and Technology of China,2009.
[10] 梁刚.大型藻类遥感监测方法研究[D].大连:大连海事大学,2011. Liang G.The method of monitoring macroalgae by remote sesning[D].Dalian:Dalian Maritime University,2011.
[11] Elijah R, Amina R, Mads S T,et al.Spectral definition of the Macro-algae Ulva curvata in the Back-barrier Bays of the eastern shore of Virginia,USA[J].Int J Remote Sens,2012,33(2):586-603.
[12] 顾行发,陈兴峰,尹球,等.黄海浒苔灾害遥感立体监测[J].光谱学与光谱分析,2011,31(6):1627-1632. Gu X F,Chen X F,Yin Q,et al.Stereoscopic remote sensing used in monitoring Enteromorpha prolifra disaster in Chinese Yellow Sea[J].Spectroscopy and Spectral Analysis,2011,31(6):1627-1632.
[13] 赵文静,张杰,崔廷伟,等.水下悬浮浒苔海面光谱响应的辐射传输模拟[J].光谱学与光谱分析,2009,29(6):1656-1660. Zhao W J,Zhang J,Cui T W,et al.Enteromorpha prolifera underwater spectral research based on simulation of radiation transmission[J].Spectroscopy and Spectral Analysis,2009,29(6):1656-1660.
[14] 李颖,梁刚,于水明,等.监测浒苔灾害的微波遥感数据选取[J].海洋环境科学,2011,30(5):739-742. Li Y,Liang G,Yu S M,et al.Selection of microwave remote sensing data of monitoring of Entermorpha prolifera disaster[J].Marine Environmental Science,2011,30(5):739-742.
[15] 蒋兴伟,邹亚荣,王华,等.基于SAR快速提取浒苔信息应用研究[J].海洋学报,2009,31(2):63-68. Jiang X W,Zou Y R,Wang H,et al.Application study on quick extraction of Entermorpha prolifera information using SAR data[J].Acta Oceanologic Sinica,2009,31(2):63-68.
[16] Cui T W,Zhang J,Sun L E,et al.Satellite monitoring of massive green macroalgae bloom(GMB):Imaging ability comparison of multi-source data and drifting velocity estimation[J].Int J Remote Sens,2012,33(17):5513-5527.
[17] Shi W,Wang M.Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008[J].Journal of Geophysical Research,2009(114):C120010,doi:10.1029/2009JC005513.
[18] Ekatrand S.Landsat TM based quantification of chlorophyll-a during algae blooms in coastal waters[J].Int J Remote Sens,1992,l3(10):1913-1926.
[19] 李素菊,吴倩,王学军,等.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14(3):228-234. Li S J,Wu Q,Wang X J,et al.Correlations between reflectance spectra and contents of chlorophyll-a in Chaohu Lake[J].Journal of Lake Science,2002,14(3):228-234.
[20] 孙凌,郭茂华,李三妹,等.用FY-3A MERSI进行青岛海域浒苔监测[J].遥感信息,2010,(1):64-68. Sun L,Guo M H,Li S M,et al.Enteromorpha prolifera monitoring with FY-3A MERSI around the sea area of Qingdao[J].Remote Sensing Information,2010,(1):64-68.
[21] 蒋兴伟,刘建强,邹斌,等.浒苔灾害卫星遥感应急监视监测系统及其应用[J].海洋学报,2009,31(1):52-64. Jiang X W,Liu J Q,Zou B,et al.The satellite remote sensing system used in emergency response monitoring for Entermorpha prolifera disaster and its application[J].Acta Oceanologica Sinica,2009,31(1):52-64.
[22] Hu C M,He M X.Origin and offshore extent of floating algae in olympic sailing area[J].Eos,American Geophysical Union Transactions,2008,89(33):302-303.
[23] Hu C M,Li D Q,Chen C S,et al.On the recurrent Ulvaprolifera blooms in the Yellow Sea and East China Sea[J].Journal of Geophysical Research,2010(115):C05017.doi:10.1029/2009JC005561.
[24] Keesing J K,Liu D Y,Fearns P,et al.Inter-and Intra-annual patterns of Ulvaprolifera green tides in the Yellow Sea during 2007-2009,their origin and relationship to the expansion of coastal seaweed aquaculture in China[J].Marine Pollution Bulletin,2011,62(6):1169-1182.
[25] O'Reilly J E,Maritorena S,Mitchell B,et al.Ocean color chlorophyll algorithms for SeaWiFS[J].Journal of Geophsical Research,1998,103(C11):24937-24953.
[26] Carder K L,Chen E R,Cannizzaro J R,et al.Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a[J].Advances in Space Research,2004,33(7):1152-1159.
[27] Esaias W E,Abbott M R,Barton I,et al.An overview of MODIS capabilities for ocean science observations[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(4):1250-1263.
[28] 李四海,恽才兴,唐军武.河口悬浮泥沙浓度SeaWiFS遥感定量模式研究[J].海洋学报,2004,24(2):51-58. Li S H,Hui C X,Tang J W.A study on the quantitative remote sensing model for the sediment concentration in estuary[J].Acta Oceanologica Sinica,2004,24(2):51-58.
[29] Keiner L E,Brown C W.Estimating oceanic chlorophyll concentrations with neural networks[J].Int J Remote Sens,1999,20(1):189-194.
[30] 丛丕福.海洋叶绿素遥感反演及海洋初级生产力估算研究[D].北京:中国科学院遥感应用研究所,2006. Cong P F.Inversion of oceanic chlorophyll concentrations and the estimation of ocean primary production by remote sensing[D].Beijing:Institute of Remote Sensing Applications Chinese Academy of Sciences,2006.
[31] Krawczyk H,Neurnarm A,Walzel T,et al.Investigation of interpretation possibilities of spectral high dimensional measurements by means of principal component analysis-a concept for physical interpretation of those measurements[C]//Chavez P S.Proceedings of the society of photo-optical instrumentation engineers(SPIE),Orlando:Spie-international Society for Optical Engineering,1993(1938):40l-411.
[32] 殷蕾,唐军武,宋庆君.基于遥感反射比光谱的一种藻类识别方法[J].海洋学报,2011,33(3):55-62. Yin L,Tang J W,Song Q J.A method of classification for algal species based on remote sensing reflectance spectra[J].Acta Oceanologica Sinica,2011,33(3):55-62.
[1] Xiaoping XIE, Maowei BAI, Zhicong CHEN, Weibo LIU, Shuna XI. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault[J]. Remote Sensing for Land & Resources, 2019, 31(1): 237-246.
[2] Xinxin SUI, Suwen SUI. Design and implementation of remote sensing interpretation map database based on MapGIS and ArcGIS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 218-224.
[3] Xinxin SUI, Suwen SUI, Kun LIU. Research and construction of interpretation result data management system toward remote sensing application[J]. Remote Sensing for Land & Resources, 2018, 30(3): 238-243.
[4] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[5] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
[6] LI Xiaomin, ZHANG Kun, LI Dongling, LI Delin, LI Zongren, ZHANG Xing. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 57-64.
[7] LI Xiaomin, YAN Yunpeng, LIU Gang, LI Dongling, ZHANG Xing, ZHUANG Yongcheng. Application of ZY-1 02C satellite data to hydrogeological investigation in Zanda area, Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 141-148.
[8] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[9] SU Yuanyuan, ZHANG Jingfa, HE Zhongtai, JIANG Wenliang, JIANG Hongbo, LI Qiang. Assessment of applying ZY-3 DEM data to quantitative study of active structures[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 122-130.
[10] LIU Dechang, TONG Qinlong, LIN Ziyu, YANG Guofang. Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 136-143.
[11] XU Bing, FANG Chen. Data fusion methods of ZY-1 02C and ETM+ images and effect evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 80-85.
[12] XU Yueren, HE Honglin, CHEN Lize, SHEN Xuhui. Dynamic remote sensing interpretation of geological disasters in Nanping City of Fujian Province using CBERS serial data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 153-159.
[13] ZHANG Mingyang, MA Weifeng, TANG Xiangdan, LI Xianwei. Automatic mapping of the results of 3D remote sensing interpretation of geological disasters[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 164-167.
[14] YU Feng-ming, HE Long-qing, WANG Lei. Remote Sensing Interpretation of Ductile Shear Zone in Wudang Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 124-131.
[15] WANG Chang-hai, LIU Deng-zhong, LIU Jin-long, HUANG Hui. Internal Structure and Assemblage Features of Tectonic Slices in Dong Cuo Melange Zone[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 75-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech