Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (1) : 171-175     DOI: 10.6046/gtzyyg.2013.01.30
GIS |
Design and implementation of a 3D visualization and early warning system for Radar data based on GIS
SHI Yiqiang1, WU Lina1, WU Chenfeng2
1. Research Center of Image Information Engineering and Technology, Jimei University, Xiamen 361021, China;
2. Xiamen Meteorological Bureau, Xiamen 361012, China
Download: PDF(4101 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the application of GIS spatial analysis method, a 3D visualization and early warning system is designed and developed for new generation Doppler meteorological Radar data based on the technology of ESRI ArcGIS Engine and Microsoft VB.net. This system has the main functions of automatic coordinate conversion, statistic and dynamic analysis, 3D visualization, automatic early warning, emergent communication, and special charting associated with geographic information. 3D visualization can provide weather forecasters with detailed terrain information. For the first time, the automatic early warning model is built for the application of Doppler meteorological Radar data, which is based on GIS spatial analysis. The results show that this system can provide a powerful support for refined short-time weather forecasting.

Keywords object-oriented      pond aquaculture      remote sensing      SPOT5     
:  TP311  
  P409  
Issue Date: 21 February 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Jingping
ZHAO Jianhua
ZHANG Fengshou
LI Fang
Cite this article:   
XU Jingping,ZHAO Jianhua,ZHANG Fengshou, et al. Design and implementation of a 3D visualization and early warning system for Radar data based on GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 171-175.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.01.30     OR     https://www.gtzyyg.com/EN/Y2013/V25/I1/171
[1] 李江南.GIS在气象数据处理中的应用[J].广东气象,2002(4):14-15. Li J N.Application of geographic information system to process the meteorological data[J].Guangdong Meteorology,2002(4):14-15.
[2] 吴秀芹,张洪岩,李瑞改,等.ArcGIS 9地理信息系统应用与实践(上册)[M].北京:清华大学出版社,2007:5-6. Wu X Q,Zhang H Y,Li R G,et al.Application and practice of geographic information system for ArcGIS 9(the first volume)[M].Beijing:Tsinghua University Press,2007:5-6.
[3] 毛卫星,王秀荣,刘海波.全国气象业务服务信息系统中图形产品的研制开发[J].新疆气象,2005,28(5):1-3. Mao W X,Wang X R,Liu H B.Development of graphs product exported from the national weather operational information service system[J].Xinjiang Meteorology,2005,28(5):1-3.
[4] 吴焕萍,罗兵,王维国,等.GIS技术在决策气象服务系统建设中的应用[J].应用气象学报,2008,19(3):380-384. Wu H P,Luo B,Wang W G,et al.Application of geographic information system to decision-making meteorological service system[J].Journal of Applied Meteorological Science,2008,19(3):380-384.
[5] 赵现平,李云川,王福侠,等.2004年两次对流风暴的多普勒雷达资料对比分析研究[J].干旱气象,2005,23(1):33-38. Zhao X P,Li Y C,Wang F X,et al.Comparison analysis on Doppler Radar data of two convective storms in 2004[J].Journal of Arid Meteorology,2005,23(1):33-38.
[6] 胡胜,伍志方,刘运策,等.新一代多普勒天气雷达广东省区域拼图初探[J].气象科学,2006,26(1):74-80. Hu S,Wu Z F,Liu Y C,et al.The primary study about the Guangdong Province regional CINRAD mosaic[J].Journal of Meteorological Sciences,2006,26(1):74-80.
[7] 马玉岩,龚静,郭三刚.地理信息系统中多普勒气象雷达资料显示技术[J].青海科技,2007(2):37-39. Ma Y Y,Gong J,Guo S G.The display technology for Doppler Weather Radar data based on geographic information system[J].Qinghai Science and Technology,2007(2):37-39.
[8] 骆兴江.多普勒天气雷达产品终端及其回波三维显示方法的设计[D].南京:南京信息工程大学,2008. Luo X J.Design of Doppler Weather Radar production terminal and its echoes 3D visualization method[D].Nanjing:Nanjing University of Information Science and Technology,2008.
[9] 折星星.多普勒天气雷达数据分析系统的设计与实现[D].沈阳:东北大学,2008. She X X.Design and implementation of Doppler Weather Radar data analysis system[D].Shenyang:Northeastern University,2008.
[10] 周鑫,何建新,刘艳,等.利用GIS软件实现多普勒天气雷达产品设计[J].现代雷达,2010,32(7):106-108. Zhou X,He J X,Liu Y,et al.Design of Doppler Radar products by GIS[J].Modern Radar,2010,32(7):106-108.
[11] 汤成锋,刘至仁,林灿文,等.基于GIS和多普勒雷达的乡镇暴雨预警技术研究[J].中国防汛抗旱,2011,21(2):51-53. Tang C F,Liu Z R,Lin C W,et al.Study on the technology of early warning for rainstorm in township level based on GIS and Doppler Radar[J].China Flood and Drought Management,2011,21(2):51-53.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech