|
Abstract The addition of meteorological factors to the estimation of near-ground atmospheric particulate concentration based on AOD is one of the most popular techniques nowadays. In this paper, AOD (Aerosol Optical Depth), FMF (Fine-Mode Fraction) and PM2.5mass concentration data from March 2014 to February 2019 in Nanjing were obtained, and the mass concentration of PM2.5 in Nanjing was retrieved in combination with the meteorological simulation data from WRF (Weather Research and Forecast) model. The results show that, compared with correlation between AOD and PM2.5, the correlation analysis of fine aerosol optical depth AODf and PM2.5 obtained by FMF correction can obtain a higher fitting coefficient, and the maximum R2 reaches 0.40. By adding meteorological factors on different heights into random forest model to establish an inversion model for PM2.5 mass concentration, the obtained fitting coefficients and various error indicators are better than those from models with only near-surface meteorological factors, which indicates that the PM2.5 mass concentration is affected by the combined effect of multiple factors, thus the result can provide a basis and reference for inversion of PM2.5 mass concentration by using multi-source data.
|
Keywords
MODIS
FMF
WRF model
PM2.5
mass concentration estimation
|
|
Corresponding Authors:
ZHA Yong
E-mail: 347128908@qq.com;yzha@njnu.edu.cn
|
Issue Date: 21 July 2021
|
|
|
[1] |
Betha R, Behera S, Balasubramanian R. 2013 Southeast Asian smoke haze:Fractionation of particulate-bound elements and associated health risk[J]. Environmental Science & Technology, 2014, 48(8):4327-4335.
doi: 10.1021/es405533d
url: https://pubs.acs.org/doi/10.1021/es405533d
|
[2] |
Peng R D, Bell M L, Geyh A S. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution[J]. Environmental Health Perspectives, 2009, 117(6):957-963.
doi: 10.1289/ehp.0800185
url: https://ehp.niehs.nih.gov/doi/10.1289/ehp.0800185
|
[3] |
Kloog I, Ridgway B, Koutrakis P, et al. Long and short term exposure to PM2.5 and mortality[J]. Epidemiology, 2013, 24:555-561.
doi: 10.1097/EDE.0b013e318294beaa
pmid: 23676266
|
[4] |
King M, Kaufman Y, Nakajima T. Remote sensing of tropospheric aerosols from space:Past,present and future[J]. Bulletin of the American Meteorological Society, 1999, 80(11):2229-2259.
doi: 10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
url: http://journals.ametsoc.org/doi/10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
|
[5] |
Xu X D. Dynamic issues of urban atmospheric pollution models[J]. Journal of Applied Meteorological Science, 2002, 13:1-12.
|
[6] |
Xu X D, Shi X H, Zhang S J, et al. Influence domain and climate effect related to aerosol of urban community around Beijing[J]. Chinese Science Bulletin, 2005, 50(22):2522-2530.
|
[7] |
Bell M, Ebis K, Peng R. Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research[J]. Journal of Exposure Science & Environmental Epidemiology, 2011, 21:372-384.
|
[8] |
Luo N, Zhao W, Yan X. Integrated aerosol optical thickness,gaseous pollutants and meteorological parameters to estimate ground PM2.5 concentration[J]. Fresenius Environmental Bulletin, 2014, 23:2567-2577.
|
[9] |
Lee K H, Kim Y J, Kim M J. Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004[J]. Atmospheric Environment, 2006, 40:5146-5155.
doi: 10.1016/j.atmosenv.2006.03.050
url: https://linkinghub.elsevier.com/retrieve/pii/S1352231006003633
|
[10] |
Lee K H, Kim Y J, Wolfgand H. Sptio-temporal variability of satellite derived aerosol optical thickness over Northeast Asia in 2004[J]. Atmospheric Environment, 2007, 41:3959-3973.
doi: 10.1016/j.atmosenv.2007.01.048
url: https://linkinghub.elsevier.com/retrieve/pii/S135223100700101X
|
[11] |
Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:Implications for air quality studies[J]. Geophysical Research Letters, 2003, 30(21):2095.
doi: 10.1029/2003GL018174
url: http://doi.wiley.com/10.1029/2003GL018174
|
[12] |
Engel-Cox J A, Holloman C H, Coutant B W, et al. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality[J]. Atmospheric Environment, 2004, 38:2495-2509.
doi: 10.1016/j.atmosenv.2004.01.039
url: https://linkinghub.elsevier.com/retrieve/pii/S1352231004001451
|
[13] |
Hutchison K D, Smith S, Faruqui S J. Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system[J]. Atmospheric Environment, 2005, 39:7190-7203.
doi: 10.1016/j.atmosenv.2005.08.036
url: https://linkinghub.elsevier.com/retrieve/pii/S1352231005007922
|
[14] |
Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental Science & Technology, 2005, 39:3269-3278.
doi: 10.1021/es049352m
url: https://pubs.acs.org/doi/10.1021/es049352m
|
[15] |
Nicolantonio W D, Cacciari A, Bolzacchini E, et al.MODIS aerosol optical properties over north italy for estimating surface-level PM2.5[C]//Proceedings of Envisat Symposium 2007, Montreux,Switzerland, ESA SP- 636,2007.
|
[16] |
Xing Y, Shi W Z, Li Z Q, et al. Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China[J]. Atmospheric Environment, 2017, 170:290-302.
doi: 10.1016/j.atmosenv.2017.09.023
url: https://linkinghub.elsevier.com/retrieve/pii/S1352231017306143
|
[17] |
林俊, 刘卫, 李燕, 等. 大气气溶胶粒径分布特征与气象条件的相关性分析[J]. 气象与环境学报, 2009, 25(1):1-5.
|
[17] |
Lin J, Liu W, Li Y, et al. Relationship between meteorological conditions and particle size distribution of atmospheric aerosols[J]. Journal of Meteorology and Environment, 2009, 25(1):1-5.
|
[18] |
纪晓璐, 廉丽姝, 周甜甜, 等. 基于MODIS数据的环渤海地区气溶胶时空变化特征分析[J]. 环境污染与防治, 2017, 39(11):1238-1241,1245.
|
[18] |
Ji X L, Lian L S, Zhou T T, et al. Temporal and spatial variation characteristics analysis of aerosol around Bohai Sea region based on MODIS data[J]. Environmental Pollution & Control, 2017, 39(11):1238-1241,1245.
|
[19] |
Ni X L, Cao C X, Zhou Y K, et al. Spatio-temporal pattern estimation of PM 2.5 in Beijing-Tianjin-Hebei region based on MODIS AOD and meteorological data using the back propagation neural network[J]. Atmosphere, 2018, 105(9):1-14.
|
[20] |
侯俊雄, 李琦, 朱亚杰, 等. 融机器学习与WRF大气模式的PM2.5预报方法[J]. 测绘科学, 2018, 43(2):114-120.
|
[20] |
Hou J Y, Li Q, Zhu Y J, et al. PM2.5 forecasting method based on machine learning and WRF hybrid model[J]. Science of Surveying and Mapping, 2018, 43(2):114-120.
|
[21] |
贺军亮, 张淑媛, 李佳, 等. 基于MODIS的城市大气颗粒物污染指数研究[J]. 国土资源遥感, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.
doi: 10.6046/gtzyyg.2016.02.20
|
[21] |
He J L, Zhang S Y, Li J, et al. Particulate matter indices derived from MODIS data for indicating urban air pollution[J]. Remote Sensing for Land and Resources, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.
doi: 10.6046/gtzyyg.2016.02.20
|
[22] |
王贺锐, 吴彩保. MODIS气溶胶产品在北京监测PM2.5质量浓度中的应用[J]. 科技创新导报, 2016, 13(20):76-78.
|
[22] |
Wang H R, Wu C B. Application of MODIS aerosol products in monitoring PM2.5 concentration in Beijing[J]. Science and Technology Innovation Herald, 2016, 13(20):76-78.
|
[23] |
Zhang Y, Li Z Q. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation[J]. Remote Sensing of Environment, 2015, 160:252-262.
doi: 10.1016/j.rse.2015.02.005
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715000516
|
[24] |
Melissa S B, David J K. Precipitation simulations using WRF as a nested regional climate model[J]. Journal of Applied Meteorology and Climatology, 2009, 48:2152-2159.
doi: 10.1175/2009JAMC2186.1
url: http://journals.ametsoc.org/doi/10.1175/2009JAMC2186.1
|
[25] |
高洋. WRF模式对2008年1月我国南方冻雨极端天气过程的数值模拟研究[D]. 北京:中国气象科学院, 2011.
|
[25] |
Gao Y. WRF numerical simulation of freezing rain extreme weather process in southern China in January 2008[D]. Beijing:Chinese Academy of Meteorological Sciences, 2011.
|
[26] |
张晨雷, 陈报章, 王瑾. WRF模式气象数据在遥感反演PM2.5中的应用研究[J]. 地理空间信息, 2018, 16(2):45-47.
|
[26] |
Zhang C L, Chen B Z, Wang J. Application of WRF model meteorological data in PM2.5 remote sensing inversion[J]. Geospatial Information, 2018, 16(2):45-47.
|
[27] |
沈雷, 顾芳, 张加宏, 等. 相对湿度对大气气溶胶消光系数的影响[J]. 光散射学报, 2017, 29(3):251-256.
|
[27] |
Shen L, Gu F, Zhang J H, et al. The effect of relative humidity on the extinction coefficient of aerosols[J]. The Journal of Light Scattering, 2017, 29(3):251-256.
|
[28] |
Tian J, Chen D M. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements[J]. Remote Sensing of Environment, 2010, 114(2):221-229.
doi: 10.1016/j.rse.2009.09.011
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709002831
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|