Please wait a minute...
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 66-74     DOI: 10.6046/gtzyyg.2020207
The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model
WEI Geng(), HOU Yuqiao, HAN Jiamei, ZHA Yong()
School of Geography Science, Nanjing Normal University, Nanjing 210023, China
Download: PDF(6441 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The addition of meteorological factors to the estimation of near-ground atmospheric particulate concentration based on AOD is one of the most popular techniques nowadays. In this paper, AOD (Aerosol Optical Depth), FMF (Fine-Mode Fraction) and PM2.5mass concentration data from March 2014 to February 2019 in Nanjing were obtained, and the mass concentration of PM2.5 in Nanjing was retrieved in combination with the meteorological simulation data from WRF (Weather Research and Forecast) model. The results show that, compared with correlation between AOD and PM2.5, the correlation analysis of fine aerosol optical depth AODf and PM2.5 obtained by FMF correction can obtain a higher fitting coefficient, and the maximum R2 reaches 0.40. By adding meteorological factors on different heights into random forest model to establish an inversion model for PM2.5 mass concentration, the obtained fitting coefficients and various error indicators are better than those from models with only near-surface meteorological factors, which indicates that the PM2.5 mass concentration is affected by the combined effect of multiple factors, thus the result can provide a basis and reference for inversion of PM2.5 mass concentration by using multi-source data.

Keywords MODIS      FMF      WRF model      PM2.5      mass concentration estimation     
ZTFLH:  P407X87  
Corresponding Authors: ZHA Yong     E-mail:;
Issue Date: 21 July 2021
E-mail this article
E-mail Alert
Articles by authors
Geng WEI
Yuqiao HOU
Jiamei HAN
Yong ZHA
Cite this article:   
Geng WEI,Yuqiao HOU,Jiamei HAN, et al. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
URL:     OR
参数 采用方案
地图投影 Lambert投影
垂直分层嵌套层数 14层
嵌套层数 3层
微物理过程 Lin 方案
积云参数化 Kain-Fritsch 方案
边界层参数化 Mellor-Yamada-Janjic湍流动能方案
陆面过程 Noah 方案
短波辐射 Dudhia 方案
长波辐射 RRTM方案
Tab.1  Parameter schemes of WRF mode
Fig.1  Annual and quarterly average concentrations of AOD and PM2.5. in Nanjing
Fig.2  Correlation between PM2.5 and AODm
Fig.3  Correlation between PM2.5 and AODf
仅含地面气象因子 包含不同高度气象因子
春季 0.57 14.97 15.56 34.03 0.71 10.03 10.98 28.35
夏季 0.71 11.45 13.50 34.85 0.74 6.83 7.68 23.19
秋季 0.62 18.77 18.52 39.07 0.71 13.27 14.15 38.92
冬季 0.65 20.59 25.51 41.35 0.73 19.92 20.12 37.22
Tab.2  Multiple regression model in different seasons
Fig.4  Verification results of model with only near-ground meteorological factors
Fig.5-1  Verification results of model including meteorological factors on different altitudes
Fig.5-2  Verification results of model including meteorological factors on different altitudes
Fig.6  Effect of different influence factors on PM2.5 mass concentration in four seasons
[1] Betha R, Behera S, Balasubramanian R. 2013 Southeast Asian smoke haze:Fractionation of particulate-bound elements and associated health risk[J]. Environmental Science & Technology, 2014, 48(8):4327-4335.
doi: 10.1021/es405533d url:
[2] Peng R D, Bell M L, Geyh A S. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution[J]. Environmental Health Perspectives, 2009, 117(6):957-963.
doi: 10.1289/ehp.0800185 url:
[3] Kloog I, Ridgway B, Koutrakis P, et al. Long and short term exposure to PM2.5 and mortality[J]. Epidemiology, 2013, 24:555-561.
doi: 10.1097/EDE.0b013e318294beaa pmid: 23676266
[4] King M, Kaufman Y, Nakajima T. Remote sensing of tropospheric aerosols from space:Past,present and future[J]. Bulletin of the American Meteorological Society, 1999, 80(11):2229-2259.
doi: 10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2 url:<2229:RSOTAF>2.0.CO;2
[5] Xu X D. Dynamic issues of urban atmospheric pollution models[J]. Journal of Applied Meteorological Science, 2002, 13:1-12.
[6] Xu X D, Shi X H, Zhang S J, et al. Influence domain and climate effect related to aerosol of urban community around Beijing[J]. Chinese Science Bulletin, 2005, 50(22):2522-2530.
[7] Bell M, Ebis K, Peng R. Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research[J]. Journal of Exposure Science & Environmental Epidemiology, 2011, 21:372-384.
[8] Luo N, Zhao W, Yan X. Integrated aerosol optical thickness,gaseous pollutants and meteorological parameters to estimate ground PM2.5 concentration[J]. Fresenius Environmental Bulletin, 2014, 23:2567-2577.
[9] Lee K H, Kim Y J, Kim M J. Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004[J]. Atmospheric Environment, 2006, 40:5146-5155.
doi: 10.1016/j.atmosenv.2006.03.050 url:
[10] Lee K H, Kim Y J, Wolfgand H. Sptio-temporal variability of satellite derived aerosol optical thickness over Northeast Asia in 2004[J]. Atmospheric Environment, 2007, 41:3959-3973.
doi: 10.1016/j.atmosenv.2007.01.048 url:
[11] Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:Implications for air quality studies[J]. Geophysical Research Letters, 2003, 30(21):2095.
doi: 10.1029/2003GL018174 url:
[12] Engel-Cox J A, Holloman C H, Coutant B W, et al. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality[J]. Atmospheric Environment, 2004, 38:2495-2509.
doi: 10.1016/j.atmosenv.2004.01.039 url:
[13] Hutchison K D, Smith S, Faruqui S J. Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system[J]. Atmospheric Environment, 2005, 39:7190-7203.
doi: 10.1016/j.atmosenv.2005.08.036 url:
[14] Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental Science & Technology, 2005, 39:3269-3278.
doi: 10.1021/es049352m url:
[15] Nicolantonio W D, Cacciari A, Bolzacchini E, et al.MODIS aerosol optical properties over north italy for estimating surface-level PM2.5[C]//Proceedings of Envisat Symposium 2007, Montreux,Switzerland, ESA SP- 636,2007.
[16] Xing Y, Shi W Z, Li Z Q, et al. Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China[J]. Atmospheric Environment, 2017, 170:290-302.
doi: 10.1016/j.atmosenv.2017.09.023 url:
[17] 林俊, 刘卫, 李燕, 等. 大气气溶胶粒径分布特征与气象条件的相关性分析[J]. 气象与环境学报, 2009, 25(1):1-5.
[17] Lin J, Liu W, Li Y, et al. Relationship between meteorological conditions and particle size distribution of atmospheric aerosols[J]. Journal of Meteorology and Environment, 2009, 25(1):1-5.
[18] 纪晓璐, 廉丽姝, 周甜甜, 等. 基于MODIS数据的环渤海地区气溶胶时空变化特征分析[J]. 环境污染与防治, 2017, 39(11):1238-1241,1245.
[18] Ji X L, Lian L S, Zhou T T, et al. Temporal and spatial variation characteristics analysis of aerosol around Bohai Sea region based on MODIS data[J]. Environmental Pollution & Control, 2017, 39(11):1238-1241,1245.
[19] Ni X L, Cao C X, Zhou Y K, et al. Spatio-temporal pattern estimation of PM 2.5 in Beijing-Tianjin-Hebei region based on MODIS AOD and meteorological data using the back propagation neural network[J]. Atmosphere, 2018, 105(9):1-14.
[20] 侯俊雄, 李琦, 朱亚杰, 等. 融机器学习与WRF大气模式的PM2.5预报方法[J]. 测绘科学, 2018, 43(2):114-120.
[20] Hou J Y, Li Q, Zhu Y J, et al. PM2.5 forecasting method based on machine learning and WRF hybrid model[J]. Science of Surveying and Mapping, 2018, 43(2):114-120.
[21] 贺军亮, 张淑媛, 李佳, 等. 基于MODIS的城市大气颗粒物污染指数研究[J]. 国土资源遥感, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.
doi: 10.6046/gtzyyg.2016.02.20
[21] He J L, Zhang S Y, Li J, et al. Particulate matter indices derived from MODIS data for indicating urban air pollution[J]. Remote Sensing for Land and Resources, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.
doi: 10.6046/gtzyyg.2016.02.20
[22] 王贺锐, 吴彩保. MODIS气溶胶产品在北京监测PM2.5质量浓度中的应用[J]. 科技创新导报, 2016, 13(20):76-78.
[22] Wang H R, Wu C B. Application of MODIS aerosol products in monitoring PM2.5 concentration in Beijing[J]. Science and Technology Innovation Herald, 2016, 13(20):76-78.
[23] Zhang Y, Li Z Q. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation[J]. Remote Sensing of Environment, 2015, 160:252-262.
doi: 10.1016/j.rse.2015.02.005 url:
[24] Melissa S B, David J K. Precipitation simulations using WRF as a nested regional climate model[J]. Journal of Applied Meteorology and Climatology, 2009, 48:2152-2159.
doi: 10.1175/2009JAMC2186.1 url:
[25] 高洋. WRF模式对2008年1月我国南方冻雨极端天气过程的数值模拟研究[D]. 北京:中国气象科学院, 2011.
[25] Gao Y. WRF numerical simulation of freezing rain extreme weather process in southern China in January 2008[D]. Beijing:Chinese Academy of Meteorological Sciences, 2011.
[26] 张晨雷, 陈报章, 王瑾. WRF模式气象数据在遥感反演PM2.5中的应用研究[J]. 地理空间信息, 2018, 16(2):45-47.
[26] Zhang C L, Chen B Z, Wang J. Application of WRF model meteorological data in PM2.5 remote sensing inversion[J]. Geospatial Information, 2018, 16(2):45-47.
[27] 沈雷, 顾芳, 张加宏, 等. 相对湿度对大气气溶胶消光系数的影响[J]. 光散射学报, 2017, 29(3):251-256.
[27] Shen L, Gu F, Zhang J H, et al. The effect of relative humidity on the extinction coefficient of aerosols[J]. The Journal of Light Scattering, 2017, 29(3):251-256.
[28] Tian J, Chen D M. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements[J]. Remote Sensing of Environment, 2010, 114(2):221-229.
doi: 10.1016/j.rse.2009.09.011 url:
[1] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[2] MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America[J]. Remote Sensing for Natural Resources, 2022, 34(4): 203-215.
[3] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[4] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[5] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[6] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[7] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[8] YANG Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model[J]. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
[9] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[10] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[11] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[12] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[13] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[14] Yuqi CHENG, Yuqing WANG, Jingping SUN, Chengfu ZHANG. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(1): 200-208.
[15] Kailin LI, Chungui ZHANG, Kuo LIAO, Lichun LI, Hong WANG. Study of remote sensing atmosphere index of Fujian Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 151-158.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech