Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (1) : 37-41     DOI: 10.6046/gtzyyg.2014.01.07
Technology and Methodology |
Clustering analysis based on hyperspectral DN values of waste oil
GUO Yi, DING Haiyong, XU Jingxin, XU Hao
School of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(874 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to classify the edible oil and the waste cooking oil by using their difference in spectral characteristics, the authors employed 22 samples collected from the mixture of two kinds of waste oil and four sorts of edible oil to analyze the possibility of distinguishing these two kinds of oil by clustering their hyperspectral digital number. Spectral data which lies in the range of 350~2 500 nm were utilized in this paper for clustering analysis. Digital number of hyperspectral data, first order derivation and second order derivation of the reflective data were used as the spectral information for the target. Correlation distance, Euclidean distance,standardized Euclidean distance and Minkowski distance method were used to calculate the distance between the spectral objects in the data matrix. And then, eight different kinds of distance method were employed to compute the clustering tree, which accurately classified these oils into twenty-two types. Numerical experiments demonstrate that un-weighted distance method and interior square sum distance could be utilized in the correlation clustering analysis to accurately distinguish different kinds of oils in the sample and to classify these oils into 22 types accurately.

Keywords GIS      RS      human settlements environment      Jilin Province     
:  TP75  
Issue Date: 08 January 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Bangyao
LI Guozhu
LIU Chunyan
LIU Jiafu
XU Chunhui
Cite this article:   
ZHU Bangyao,LI Guozhu,LIU Chunyan, et al. Clustering analysis based on hyperspectral DN values of waste oil[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 37-41.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.01.07     OR     https://www.gtzyyg.com/EN/Y2014/V26/I1/37

[1] 潘剑宇, 尹平河, 余汉豪, 等.潲水油、煎炸老油与合格食用植物油的鉴别研究[J].食品科学, 2003, 24(8):27-29. Pan J Y, Yin P H, Yu H H, et al.Diagnostic physical and chemical target on distinguishing hogwash fat form good edible vegetable oils[J].Food Science, 2003, 24(8):27-29.

[2] 马翠红, 刘立业.基于小波分析的光谱数据处理[J].冶金分析, 2012, 32(1):34-37. Ma C H, Liu L Y.Spectral data processing based on wavelet analysis[J].Metallurgical Analysis, 2012, 32(1):34-37.

[3] 沈掌泉, 王珂, 王人潮.水稻光谱数据处理系统[J].浙江大学学报:农业与生命科学, 1998, 24(1):49-50. Sheng Z Q, Wang K, Wang R C.Study on rice spectral data processing system[J].Journal of Zhejiang Agricultural University, 1998, 24(1):49-50.

[4] 沈掌泉, 王人潮.连续型光谱数据的处理及信息提取试验[J].浙江农业大学学报, 1993, 19(s1):85-90. Sheng Z Q, Wang R C.Study on the procession and information collection of continuous spectral data[J].Journal of Zhejiang Agricultural University, 1993, 19(s1):85-90.

[5] 谢红接, 李剑锋, 刘德长, 等.高光谱数据处理及其在广西苗儿山地区的地质应用研究[J].铀矿地质, 1999, 15(1):47-54. Xie H J, Li J F, Liu D C, et al.Hyperspectral data processing and research on geological application in miaoershan district, Guangxi Province[J].Uranium Geology, 1999, 15(1):47-54.

[6] 周竹, 李小昱, 高海龙, 等.马铃薯干物质含量高光谱检测中变量选择方法比较[J].农业机械学报, 2012, 43(2):128-133, 138. Zhou Z, Li X Y, Gao H L, et al.Comparison of different variable selection methods on potato dry matter detection by hyperspectral imaging technology[J].Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2):128-133, 138.

[7] 包丽丽, 齐小花, 张孝芳, 等.几种常用油品拉曼光谱的检测及分析[J].光谱学与光谱分析, 2012, 32(2):394-397. Bao L L, Qi X H, Zhang X F, et al.Detection and analysis of several kinds of oils with Raman spectrum[J].Spectroscopy and Spectral Analysis, 2012, 32(2):394-397.

[8] 柳萍萍, 林辉, 孙华, 等.高光谱数据的降维处理方法研究[J].中南林业科技大学学报, 2011, 31(11):34-38. Liu P P, Lin H, Sun H, et al.Dimensionality reduction method of hyperion EO-1 data[J].Journal of Central South University of Forestry and Technology, 2011, 31(11):34-38.

[9] 李刚, 熊婵, 李家星, 等.高光谱检测复杂混合溶液的Monte Carlo仿真研究[J].光谱学与光谱分析, 2011, 31(11):3014-3017. Li G, Xiong C, Li J X, et al.Monte Carlo simulation of complex mixed[J].Spectroscopy and Spectral Analysis, 2011, 31(11):3014-3017.

[10] 李颖, 刘丙新, 陈澎.高光谱遥感技术在水上溢油监测中的研究进展[J].海洋环境科学, 2012, 31(3):460-464. Li Y, Liu B X, Chen P.Study advancement in oil spill monitoring using hyper-spectral remote sensing[J].Marine Environmental Science, 2012, 31(3):460-464.

[11] 吕萍, 薛龙, 何秀文, 等.生姜水分含量的可见-近红外光谱检测[J].江西农业大学学报, 2011, 33(3):602-607. Lü P, Xue L, He X W, et al.Prediction of ginger moisture content using visual near-infrared spectroscopy[J].Acta Agriculturae Universitatis Jiangxiensis, 2011, 33(3):602-607.

[12] 刘薇, 尹平河, 赵玲.荧光法测定十二烷基苯磺酸钠鉴别潲水油的研究[J].中国油脂, 2005, 30(5):24-26. Liu W, Yin P H, Zhao L.Distinguishing hogwash fat by determination of sodium dodecylbenzene sulfonate with fluorerscence spectrum analysis[J].China Oils and Fats, 2005, 30(5):24-26.

[13] 王耀, 尹平河, 梁芳慧, 等.紫外可见分光光度法鉴别掺兑潲水油的花生油[J].分析实验室, 2006, 25(3):92-94. Wang Y, Yin P H, Liang F H, et al.Distinguishing hogwash oil from peanut oil by ultraviolet-visible spectrophotometry[J].Chinese Journal of Analysis Laboratory, 2006, 25(3):92-94.

[14] 刘福莉, 陈华才, 姜礼义, 等.近红外透射光谱聚类分析快速鉴 别食用油种类[J].中国计量学院学报, 2008, 19(3):279-282. Liu F L, Chen H C, Jiang L Y, et al.Rapid discrimination of edible oil by near infrared transmission spectroscopy using clustering analysis[J].Journal of China Jiliang University, 2008, 19(3):279-282.

[15] 黄伟, 郑建军, 徐建华.地沟油的安全快速检测研究[J].山东科技大学学报:自然科学版, 2010, 29(3):51-53. Huang W, Zheng J J, Xu J H.Study on safe and rapid detection of discard-oil[J].Journal of Shandong University of Science and Technology:Natural Science, 2010, 29(3):51-53.

[16] 韩瑞梅, 杨敏华.一种改进的高光谱遥感数据波段选择方法的研究[J].测绘与空间地理信息, 2010, 33(3):137-139. Han R M, Yang M H.Study on an improved method of band selection of hyperspectral remote sensing data[J].Geomatics and Spatial Information Technology, 2010, 33(3):137-139.

[1] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[2] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[3] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[4] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[5] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[11] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[12] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[13] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[14] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[15] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech