Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (2) : 74-79     DOI: 10.6046/gtzyyg.2014.02.13
Technology and Methodology |
An analysis of height precision in applying single frequency static GPS to landslide monitoring
LIN Hao1, FAN Jinghui2, HONG Youtang1, TU Pengfei3, GUO Xiaofang2
1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China;
2. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China;
3. College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, China
Download: PDF(1943 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

As we all know,GPS has brought great convenience to surveying and mapping work. Its horizontal accuracy has reached sub-millimeter. However, due to the influences of such factors as the effects of ionosphere,multipath effect,GDOP(geometric dilution of precision) and height of antenna,the vertical deformation measurements from GPS are seldomly used by precision survey workers. Based on the reasonable layout of deformation monitoring network of Shuping landslide in the Three Gorges Reservoir Area,the authors obtained a large number of leveling and GPS data from long-term monitoring,and used leveling data as the reference to analyze the height precision of single-frequency static GPS in landslide vertical deformation monitoring. The results show that the vertical deformation monitoring precision of single-frequency static GPS is ± 2cm, that the deformation monitoring accuracy should be greater than 1/5 of deformation in the measurement period according to the monitoring code of landslide, and that single frequency static GPS is suitable for the landslide whose vertical deformation is above 10 cm in its monitoring period. For the Shuping landslide,GPS measurement can provide good monitoring data in the second to third period whose vertical deformation is up to 30 cm,but it is unsuitable for other monitoring periods in slow state.

Keywords wetland      landscape pattern      ecological security      Pressure-State-Response (PSR) model      remote sensing     
:  TP79  
  P228.4  
Issue Date: 28 March 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Peijun
CHEN Yu
TAN Kun
Cite this article:   
DU Peijun,CHEN Yu,TAN Kun. An analysis of height precision in applying single frequency static GPS to landslide monitoring[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 74-79.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.02.13     OR     https://www.gtzyyg.com/EN/Y2014/V26/I2/74

[1] 廖明生,唐婧,王腾,等.高分辨率SAR数据在三峡库区滑坡监测中的应用[J].中国科学:地球科学,2012,42(2):217-229. Liao M S,Tang J,Wang T,et al.Landslide monitoring with high-resolution SAR data in the Three Gorges Region[J].Scientia Sinica Terrae,2012,42(2):217-229.

[2] 刘根友,薛怀平,郝晓光,等.三峡库区秭归GPS滑坡监测网数据分析[J].大地测量与地球动学,2009,29(3):70-73. Liu G Y,Xue H P,Hao X G,et al.Data analysis of GPS slide monitoring network in Zigui Zone of Three Gorges Reservoir Area[J].Journal of Geodesy and Geodynamics,2009,29(3):70-73.

[3] 薛志宏,卫建东,金新平.GPS在雅砻江卡拉电站滑坡监测中的应用[J].测绘工程,2007,16(2):65-68. Xue Z H,Wei J D,Jin X P.The landslide monitoring using GPS in Kala reservoir area[J].Engineering of Surveying and Mapping,2007,16(2):65-68.

[4] 熊先才,岳仁宾,彭军怀,等.GPS技术在万州明镜滩滑坡监测中的应用[J].测绘科学,2008,33(3):145,149-150. Xiong X C,Yue R B,Peng J H,et al.Application of GPS technique in Wanzhou Mingjingtan slope deformation monitoring[J].Science of Surveying and Mapping,2008,33(3):145,149-150.

[5] 陈红卫,杨红生.GPS技术在滑坡监测中的应用[J].测绘与空间地理信息,2012,35(1):145-147,153. Chen W H,Yang H S.The application of GPS in the landslide monitoring[J].Geomatics and Spatial Information Technology,2012,35(1):145-147,153.

[6] 贾中甫,杨郁,冯启俊.精密三角高程代替二等水准测量的研究与实践[J].测绘信息与工程,2012,37(1):15-17. Jia Z F,Yang Y,Feng Q J.Research and practice on precise trigonometric leveling to replace second-class leveling survey in Erdos City[J].Journal of Geomatics,2012,37(1):15-17.

[7] 孙玉玲,王辉,李德钢.利用全站仪双向观测法进行高程测量[J].电大理工,2006(1):12-13. Sun Y L,Wang H,Li D G.Using the total station bidirectional observation method for height measurement[J].Study of Science and Engineering at RTVU,2006(1):12-13.

[8] Liu G Y,Liu L T,Chai Y J.Reference frame for GPS deformation analysis[C]//GPS/GNSS2005,December 8-10.HongKong:A9,2005:1-12.

[9] Fan J,Zhao H,Tu P,et al.CRInSAR for landslide deformation monitoring:A case in Three Gorge Area[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium(IGARSS),Honoluln,HI:IEEE,2010:3956-3959.

[10] Fan J H,Tu P,Guo X F,et al.Monitoring the deformation of a landslide with differential SAR interferometry using corner reflectors[C]//The 6th International Symposium on Digital Earth. International Society for Optics and Photonics,2009:78411I-78411I-7.

[11] 范景辉,李梅,郭小方,等.基于PSInSAR方法和ASAR数据监测天津地面沉降的试验研究[J].国土资源遥感,2007,19(4):23-27. Fan J H,Li M,Guo X F,et al.A preliminary study of the subsidence in Tianjin area using ASAR images based on PSInSAR technique[J].Remote Sensing for Land & Resources,2007,19(4):23-27.

[12] 范景辉,郭华东,郭小方,等.基于相干目标的干涉图叠加方法监测天津地区地面沉降[J].遥感学报,2008,12(1):111-118. Fan J H,Guo H D,Guo X F,et al.Monitoring subsidence in Tianjin Area using interferogram stacking based on Coherent Targets[J].Journal of Remote Sensing,2008,12(1):111-118.

[13] 薛怀平,刘根友,郝晓光,等.三峡库区秭归GPS-CR滑坡监测网的建立[C]//第三届湖北科技论坛优秀论文集.武汉:湖北省科学技术协会,2005. Xue H P,Liu G Y,Hao X G,et al.The establishment of GPS-CR landslide monitoring network in Zigui Zone of Three Gorges Reservoir Area[C]//3rd Excellent Symposium on Hubei Science and Technology Forum.Wuhan:Hubei Association for Science and Technology,2005.

[14] 黄声享,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社,2010:103-106. Huang S X,Yin H,Jiang Z.Deformation monitoring data processing[M].Wuhan:Wuhan University Press,2010:103-106.

[15] 李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005:128-132. Li Z H,Huang J S.GPS measurement and data processing[M].Wuhan:Wuhan University Press,2005:128-132.

[16] 何秀凤,桑文刚,贾东振.基于GPS的高边坡形变监测方法[J].水利学报,2006,37(6):746-750. He X F,Sang W G,Jia D Z.Deformation monitoring of steep rock slopes by means of GPS[J].Journal of Hydraulic Engineering,2006,37(6):746-750.

[17] 陈义.区域形变监测中的位移估计的方法[J].同济大学学报,2003,31(1):64-68. Chen Y.Method of displacement estimation in regional deformation monitoring[J].Journal of Tongji University,2003,31(1):64-68.

[18] 中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会.GB/T12897—2006国家一、二等水准测量规范[S].北京:中国标准出版社,2006. General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China(AQSIQ),Standardization Administration of the People's Republic of China.GB/T12897—2006 Specifications for the first and second order leveling[S].Beijing:China Standards Press,2006.

[19] 中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会.DZ/T 0221—2006崩塌、滑坡、泥石流监测规范[S].北京:中国标准出版社,2006. General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China(AQSIQ),Standardization Administration of the People's Republic of China.DZ/T 0221—2006 Monitoring code of rockfall,landslide and debris flow[S].Beijing:China Standards Press,2006.

[20] 夏耶,范景辉,李曼,等.高分辨率雷达数据三峡库区滑坡监测技术[C]//第十八届中国遥感大会论文集,2012:161-169. Xa Y,Fan J H,Li M,et al.Monitoring technique of Shuping landslide with high-resolution Radar images in Three Gorges Reservoir area,in China[C]//18th China symposium on Remote Sensing,2012:161-169.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] HE Chenlinqiu, CHENG Bo, CHEN Jinfen, ZHANG Xiaoping. Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech