Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (2) : 80-87     DOI: 10.6046/gtzyyg.2015.02.13
Technology and Methodology |
Research on image simulation technology of land observation satellite
XU Daqi1, DU Yongming2, LIN Jun1, YANG Guijun3, LIU Qiang2, LIU Qinhuo2, SHEN Zhanfeng2
1. China Centre for Resources Satellite Data and Application, Beijing 100094, China;
2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;
3. Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
Download: PDF(5434 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Satellite image simulation technology aims at simulating the band features, space geometric features, radiation characteristics, ephemeris data and format of the satellite image by the method of computer simulation before the launching of satellites. To study the Landsat image simulation technology,this paper makes a review on the development of China's own satellite remote sensing image simulation system over the past six years,and describes the design of China's image simulation system as well as the key technology. At present, the simulated bands of the system include the bands from visible light, near infrared to thermal infrared band, with the simulated spatial resolution between 3 m to 300 m. In the process of simulation, the authors used the remote sensing radiative transfer model to simulate the spectrum characteristics, employed the PROSPECT+SAIL models to simulate the spectrum of the areas covered by vegetation, and adopted spectral library to simulate the spectrum of the non-vegetation area. Based on linear decomposition of the atmospheric radiative transfer process, the authors set up a look-up table (LUT)of the atmospheric radiative transfer process so as to improve the speed of simulation calculation on the premise of guaranteeing simulation precision significantly. In order to simulate the precise geometry information, the authors used high precision geometric positioning model on the basis of considering the topographic relief, calculated the intersection between the line of sight for satellite observation and the Earth's surface pixel by pixel. Finally, The authors used the observation data after the launching of the satellite and the field measured data in the experimental field to verify the simulation precision of the image simulation technology described in this paper.

Keywords land consolidation      quality of cultivated land      evaluation system      remote sensing image     
:  TP751.1  
Issue Date: 02 March 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Quan
XIA Ping
FENG Dong
CAO Shuai
Cite this article:   
XIA Quan,XIA Ping,FENG Dong, et al. Research on image simulation technology of land observation satellite[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 80-87.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.02.13     OR     https://www.gtzyyg.com/EN/Y2015/V27/I2/80

[1] Banon G J F,Fonseca L M G.CBERS simulation from SPOT and its restoration[EB/OL][1998-05-18].http://mtc-m12.sid.inpe.br/col/dpi.inpe.br/banon/1998/05.18.09.47/doc/target.html.

[2] Börner A,Wiest L,Keller P,et al.Sensor:A tool for the simulation of hyperspectral remote sensing systems[J].ISPRS Journal of Photogrammetry and Remote Sensing,2001,55(5/6):299-312.

[3] Verhoef W,Bach H.Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models[J].Remote Sensing of Environment,2003,87(1):23-41.

[4] Brown S D,Blevins D,Schott J R.Time-gated topographic LiDAR scene simulation[C]//Proc.SPIE,2005,5791:342-353.

[5] Ientilucci E J,Brown S D.Advances in wide-area hyperspectral image simulation[C]//Proc.SPIE,2003,5075:110-121.

[6] Cathcart J M,Sheffer A D.Target and background infrared signature modeling for complex synthetic scenes[C]//Proc SPIE,Infrared Systems and Components,1988,890:95-103.

[7] Sepulcre-Cantóa G,Zarco-Tejada P J,Sobrino J A,et al.Discriminating irrigated and rainfed olive orchards with thermal ASTER imagery and DART 3D simulation[J].Agricultural and Forest Meteorology,2009,149(6/7):962-975.

[8] Grau E,Gastellu-Etchegorry P J.Radiative transfer modeling in the Earth-Atmosphere system with DART model[J].Remote Sensing of Environment,2013,139:149-170.

[9] Scott L B,D'Agostino J A.NVEOD FLIR92 thermal imaging systems performance model[C]//Proc.SPIE1689,Infrared Imaging Systems:Design,Analysis,Modeling,and Testing III,1992:194-203.

[10] 杨贵军,柳钦火,杜永明,等.农田辐射传输光学遥感成像模拟研究综述[J].北京大学学报:自然科学版,2013,49(5):537-544. Yang G J,Liu Q H,Du Y M,et al.Review of optical remote sensing imaging simulation of farmland radiation transfer process[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2013,49(5):537-544.

[11] 杨贵军,柳钦火,刘强,等.高分辨率中红外遥感(3~5 μm)成像模拟中邻近效应分析[J].红外与毫米波学报,2008,27(3):233-240. Yang G J,Liu Q H,Liu Q,et al.Adjacency effect analysis in imaging simulation of high-resolution mid-infrared(3~5 μm)remote sensing[J].Journal of Infrared and Millimeter Waves,2008,27(3):233-240.

[12] 左月萍,张建奇.红外成像系统仿真技术的现状与未来[J].红外与激光工程,2001,30(4):203-207. Zuo Y P,Zhang J Q.Review of modeling infrared imaging systems[J].Infrared and Laser Engineering,2001,30(4):203-207.

[13] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:104-129. Zhao Y S.The Principle and Method of Remote Sensing Application Analysis[M].Beijing:Science Press,2003:104-129.

[14] 徐希孺.遥感物理[M].北京:北京大学出版社,2005:383-450. Xu X R.The Physics of Remote Sensing[M].Beijing:Peking University Press,2005:383-450.

[15] 田国良.热红外遥感[M].北京:电子工业出版社,2006. Tian G L.Thermal Remote Sensing[M].Beijing:Electronic Industry Press,2006.

[16] 廖国男,郭彩丽,周诗健.大气辐射导论[M].2版.北京:气象出版社,2004:120-150. Liao G N,Guo C L,Zhou S J.The Introduction of Atmospheric Radiation[M].2nd ed.Beijing:China Meteorological Press,2004:120-150.

[17] 黎云,张天序,丁明跃.红外成像大气作用效果模拟[J].华中科技大学学报:自然科学版,2002,30(2):78-81. Li Y,Zhang T X,Ding M Y.Simulation for the effect of atmosphere on infrared imaging[J].Journal of Huazhong University of Science and Technology,2002,30(2):78-81.

[18] 杨贵军,柳钦火,黄华国,等.基于场景模型的热红外遥感成像模拟方法[J].红外与毫米波学报,2007,26(1):15-21. Yang G J,Liu Q H,Huang H G,et al.Methods for simulating infrared remote sensing images based on scene models[J].Journal of Infrared and Millimeter Waves,2007,26(1):15-21.

[19] 陈方,牛铮,廖楚江.遥感图像模拟技术方法与应用分析[J].地球信息科学,2006,8(3):114-118. Chen F,Niu Z,Liao C J.Analysis on simulation of remote sensing image and its application[J].Geo-information Science,2006,8(3):114-118.

[20] 陈雪,马建文,温奇,等.遥感邻近效应测量与数据分析[J].遥感学报,2007,11(1):1-8. Chen X,Ma J W,Wen Q,et al.Adjacency effect measurement and data analysis[J].Journal of Remote Sensing,2007,11(1):1-8.

[21] Kerekes J P,Landgrebe D A.Modeling,Simulation and Analysis of Optical Remote Sensing Systems[D].West Lafayette:School of Electrical Engineering,Purdue University,1989:89-49.

[22] 王刚,禹秉熙.基于图像仿真的对地遥感过程科学可视化研究[J].系统仿真学报,2002,14(6):755-760. Wang G,Yu B X.Study on scientific visualization of Earth remote sensing based on imagery simulation[J].Journal of System Simulation,2002,14(6):755-760.

[23] Scott L B,D'Agostino J A.NVEOD FLIR92 thermal imaging systems performance model[C]//Proc.SPIE1689,Infrared Imaging Systems:Design,Analysis,Modeling,and Testing III,1992:194-203.

[24] 林如强.基于LAI的航天遥感图像仿真与系统集成[D].福建:福建师范大学,2010. Lin R Q.System Integration and Simulation of Remote Sensing based on LAI[D].Fujian:Fujian Normal University,2010.

[25] 王更科.SETE系统中可见光图像仿真算法研究[D].郑州:河南大学,2011. Wang G K.Research of Visible Spectrum images simulation algorithm in SETE system[D].Zhengzhou:Henan University,2011.

[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] LIU Zhizhong, SONG Yingxu, YE Runqing. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 192-199.
[5] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[6] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[7] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[8] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[9] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[10] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[11] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[12] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[13] WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources, 2020, 32(4): 46-52.
[14] WEI Hongyu, ZHAO Yindi, DONG Jihong. Cooling tower detection based on the improved RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 68-73.
[15] LIU Shangwang, CUI Zhiyong, LI Daoyi. Multi-task learning for building object semantic segmentation of remote sensing image based on Unet network[J]. Remote Sensing for Land & Resources, 2020, 32(4): 74-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech