Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 45-53     DOI: 10.6046/gtzyyg.2020162
|
Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network
LIU Zhao(), ZHAO Tong(), LIAO Feifan, LI Shuai, LI Haiyang
Institute of Transportation Engineering and Geomatics, Department of Civil Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(4183 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The extraction of urban built-up areas plays an important role in urban development planning. To find out the method of extracting remote sensing image urban built-up area based on convolutional neural network which can balance efficiency and recognition accuracy, the authors started with the principle of neural network structure and compared as well as analyzed the internal structure of multiple semantic segmentation networks. The semantic segmentation network was trained separately and the results were comparatively studied. The experimental result shows that the ShelfNet-50 network could ensure high recognition accuracy while training speed, achieved 77% foreground segmentation accuracy while training time was only 14 hours, and the result of ShelfNet-50 network prediction was also highly consistent with the corresponding remote sensing image data. The experiment confirms that ShelfNet-50 network can be applied to high-resolution remote sensing image urban built-up area extraction problems.

Keywords high-resolution remote sensing image      convolutional neural network      semantic segmentation      urban built-up area     
ZTFLH:  P237  
Corresponding Authors: ZHAO Tong     E-mail: liuz@tsinghua.edu.cn;zhaot18@mails.tsinghua.edu.cn
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao LIU
Tong ZHAO
Feifan LIAO
Shuai LI
Haiyang LI
Cite this article:   
Zhao LIU,Tong ZHAO,Feifan LIAO, et al. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020162     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/45
Fig.1  ResNet basic structure
Fig.2  Deeplab v3 semantic segmentation network structure[17]
Fig.3  PSPNet semantic segmentation network structure[20]
Fig.4  ShelfNet semantic segmentation network structure[21]
Fig.5  Partial training data set
Fig.5-2  Partial training data set
网络 训练集平
均损失
验证集平
均损失
验证集平
均准确率
mIOU 背景IOU 前景IOU 前20循环平
均前景IOU
Deeplab v3-50 19.91 12.15 87.90 82.21 94.30 70.13 60.35
Deeplab v3-101 18.92 12.37 87.00 81.65 94.19 69.11 58.05
PSPNet50 19.21 12.02 88.03 82.35 94.34 70.36 63.30
PSPNet101 18.33 12.22 87.92 82.27 94.32 70.23 63.27
ShelfNet50 18.01 12.48 89.19 82.75 94.33 71.16 63.60
ShelfNet101 21.17 13.15 86.82 81.34 94.08 68.60 58.23
Tab.1  Network early stage training accuracy comparison(%)
分类器/网络 训练集平
均损失/%
验证集平
均损失/%
验证集平
均准确率/%
mIOU/% 背景IOU/% 前景IOU/% 51-80循环平
均前景IOU/%
训练时
长/h
随机森林 85.48 55.98
支持向量机 79.82 46.27
Deeplab v3-50 13.85 10.13 90.65 85.38 95.30 75.46 74.74 48.92
Deeplab v3-101 12.78 9.68 90.88 85.70 95.41 75.98 75.68 68.35
PSPNet50 13.72 9.81 90.78 85.37 95.28 75.45 74.73 32.13
PSPNet101 10.95 8.66 92.44 87.25 95.88 78.63 78.01 51.86
ShelfNet50 11.54 9.08 92.38 86.71 95.65 77.76 77.05 14.02
ShelfNet101 12.05 9.31 91.60 86.12 95.49 76.94 76.89 15.63
Tab.2  Network final training accuracy comparison
Fig.6-1  ShelfNet50 network test set segmentation results
Fig.6-2  ShelfNet50 network test set segmentation results
Fig.7  ShelfNet50 network test set segmentation error
[1] 中华人民共和国建设部. 城市规划基本术语标准:GB/T50280—1998[S]. 北京:工程建设标准全文信息系统, 1999.
[1] Ministry of Construction of the People’s Republic of China. Basic terminology standard for urban planning:GB/T50280—1998[S]. Beijing:Engineering Construction Standard Full-Text Information System, 1999.
[2] Sinha P, Verma N K, Ayele E. Urban built-up area extraction and change detection of Adama municipal area using time-series Landsat images[J]. International Journal of Advanced Remote Sensing and GIS, 2016,5(8):1886-1895.
[3] Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003,24(3):583-594.
[4] 陈志强, 陈健飞. 基于NDBI指数法的城镇用地影像识别分析与制图[J]. 地球信息科学学报, 2012,8(2):137-140.
[4] Chen Z Q, Chen J F. Urban land image recognition analysis and mapping based on NDBI index method[J]. Geo-Information Science, 2012,8(2):137-140.
[5] 梁珊, 刘荣, 祖帅, 等. 基于多光谱遥感影像的城市建设用地提取及扩张分析[J]. 测绘与空间地理信息, 2018,41(6):74-78.
[5] Liang S, Liu R, Zu S, et al. Urban construction land extraction and expansion analysis based on multi-spectral remote sensing images[J]. Geomatics and Spatial Geographic Information, 2018,41(6):74-78.
[6] Liaw A, Wiener M. Classification and regression by random forest[J]. R News, 2002,2(3):18-22.
[7] Burges C J C. A tutorial on support vector machines for pattern reco-gnition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167.
[8] Gowthami K, Thilagavathi K. Built-up area detection of remote sensing images using static clustering technique[C]// 2014 International Conference on Electronics and Communication Systems(ICECS).IEEE, 2014: 1-5.
[9] Gong P, Liu H, Zhang M, et al. STab.classification with limited sample:Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019,64(6):370-373.
doi: 10.1016/j.scib.2019.03.002 url: https://linkinghub.elsevier.com/retrieve/pii/S2095927319301380
[10] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4):541-551.
[11] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems, 2012: 1097-1105.
[12] 杨建宇, 周振旭, 杜贞容, 等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报, 2019,35(5):259-266.
[12] Yang J Y, Zhou Z X, Du Z R, et al. High-resolution remote sensing imagery rural construction land extraction based on SegNet semantic model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(5):259-266.
[13] Badrinarayanan V, Kendall A, Cipolla R. Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 url: https://www.ncbi.nlm.nih.gov/pubmed/28060704
[14] 苏健民, 杨岚心, 景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用, 2019,55(7):212-218.
[14] Su J M, Yang L X, Jing W P. High-resolution remote sensing image semantic segmentation method based on U-Net[J]. Computer Engineering and Applications, 2019,55(7):212-218.
[15] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham.Berlin,German:Springer, 2015: 234-241.
[16] Chen L C, Papandreou G, Schroff F. et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].12017-12-05. http://arxiv.org/odf/1706.05587.pdf.
url: http://arxiv.org/odf/1706.05587.pdf
[17] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J/OL]. [2019-05-30].https://arxiv.org/abs/1511.07122.pdf.
url: https://arxiv.org/abs/1511.07122.pdf
[18] 王俊强, 李建胜, 周华春, 等. 基于Deeplabv3+与CRF的遥感影像典型要素提取方法[J]. 计算机工程, 2019,45(10):260-265,271.
[18] Wang J Q, Li J S, Zhou H C, et al. Typical elements extraction method of remote sensing image based on Deeplabv3+ and CRF[J]. Computer Engineering, 2019,45(10):260-265,271.
[19] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE, 2016: 770-778.
[20] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE, 2017: 2881-2890.
[21] Zhuang J T, Yang J L, Gu L, et al. ShelfNet for real-time semantic segmentation[EB/OL].(2018-11-27). http://arxiv.org/pdf/1811.11254 vl.pdf.
url: http://arxiv.org/pdf/1811.11254 vl.pdf
[22] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2014-09-04). http://arxiv.org/pdf//1409.1556 vl.pdf.
url: http://arxiv.org/pdf//1409.1556 vl.pdf
[1] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[2] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[3] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[4] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[5] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[6] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[7] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[8] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[9] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[10] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[11] YANG Zhaoying, HAN Lingyi, ZHENG Xiangxiang, LI Wenji, FENG Lei, WANG Yi, YANG Yongpeng. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2): 224-230.
[12] KONG Ailing, ZHANG Chengming, LI Feng, HAN Yingjuan, SUN Huanying, DU Manfei. Knowledge-based remote sensing image fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2): 47-55.
[13] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[14] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[15] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech