Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (2) : 67-71     DOI: 10.6046/gtzyyg.2017.02.10
Contents |
Wide-swath SAR ice images segmentation based on Lambert’s law
ZHAO Qingping1, 2
1. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China;
2. Information College, Huaibei Normal University, Huaibei 235000, China
Download: PDF(643 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Incidence angle effect of the SAR images is a major obstacle to the automatic interpretation of SAR sea ice image. Based on wide-swath SAR ice data, this paper proposes a new segmentation algorithm which integrates Lambert’s law correction step. The segmentation algorithm considers the effects of speckle noise and the angle of incidence of factors. The Lambert’s law correction and region merging will be combined. The efficiency of the proposed method has been demonstrated on the segmentation of synthetic SAR sea ice image and gulf of Bothnia SAR sea ice image, where the segmentation accuracy has been substantially improved in contrast to area-based Markov random field(MRF) algorithm.
Keywords texture feature      seeded region growing (SRG)      hierarchical region growing (HRG)      high-resolution remote sensing image(HRI)      image segmentation     
Issue Date: 03 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Tengfei
ZHANG Shengwei
LI Hongyu
Cite this article:   
SU Tengfei,ZHANG Shengwei,LI Hongyu. Wide-swath SAR ice images segmentation based on Lambert’s law[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 67-71.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.02.10     OR     https://www.gtzyyg.com/EN/Y2017/V29/I2/67
[1] Clausi D A,Qin K,Chowdhury M S,et al.MAGIC:Map-guided ice classification system[J].Canadian Journal of Remote Sensing,2010,36(S1):S13-S25.
[2] Karvonen A J.Baltic Sea ice SAR segmentation and classification using modified pulse-coupled neural networks[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(7):1566-1574.
[3] Soh L K,Tsatsoulis C,Gineris D,et al.ARKTOS:An intelligent system for SAR sea ice image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(1):229-248.
[4] Leclerc G,Beaulieu N,Bonn F A.A simple method to account for topography in the radiometric correction of radar imagery[J].International Journal of Remote Sensing,2001,22(17):3553-3570.
[5] Mäkynen M P,Manninen A T,Similä M H,et al.Incidence angle dependence of the statistical properties of C-Band HH-Polarization backscattering signatures of the Baltic sea ice[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2593-2605.
[6] Ulaby F T,Batlivala P P,Dobson M C.Microwave backscatter dependence on surface roughness,soil moisture,and soil texture:Part I-bare soil[J].IEEE Transactions on Geoscience Electronics,1978,16(4):286-295.
[7] Ulaby F T,Bush T F,Batlivala P P.Radar response to vegetation II:8-18 GHz band[J].IEEE Transactions on Antennas and Propagation,1975,23(5):608-618.
[8] Yu Q Y,Clausi D A.SAR sea-ice image analysis based on iterative region growing using semantics[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):3919-3931.
[9] Vincent L,Soille P.Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
[10] Menges C H,Van Zyl J J,Hill G J E,et al.A procedure for the correction of the effect of variation in incidence angle on AIRSAR data[J].International Journal of Remote Sensing,2001,22(5):829-841.
[11] Menges C H,Hill G J E,Ahmad W,et al.Incidence angle correction of AirSAR data to facilitate land-cover classification[J].Photogrammetric Engineering and Remote Sensing,2001,67(4):479-489.
[12] Yu Q,Clausi D A.IRGS:Image segmentation using edge penalties and region growing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(12):2126-2139.
[13] 李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798.
Li X C,Zhu S A.A survey of the Markov random field method for image segmentation[J].Journal of Image and Graphics,2007,12(5):789-798.
[14] Qin A K,Clausi D A.Multivariate image segmentation using semantic region growing with adaptive edge penalty[J].IEEE Transactions on Image Processing,2010,19(8):2157-2170.
[15] Richards J A,Jia X P.Remote Sensing Digital Image Analysis[M].Berlin Heidelberg:Springer-Verlag,2006:304-305.
[16] Peter Y.Segmentation of RADARSAT-2 Dual-Polarization Sea Ice Imagery[D].Waterloo:University of Waterloo,2009.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[3] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[4] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[5] Shicai ZHU, Xiaotong ZHAI, Zongwei WANG. Segmentation of large scale remote sensing image based on Mean Shift[J]. Remote Sensing for Land & Resources, 2020, 32(1): 13-18.
[6] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[7] Dechao ZHAI, Yanan FAN, Yanan ZHOU. Multi-scale segmentation of satellite imagery by edge-incorporated weighted aggregation[J]. Remote Sensing for Land & Resources, 2019, 31(3): 36-42.
[8] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[9] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[10] Jun YANG, Jianjie PEI. An improved ICM algorithm for remote sensing image segmentation[J]. Remote Sensing for Land & Resources, 2018, 30(3): 18-25.
[11] Liang LI, Lei WANG, Kai WANG, Sheng LI. A change detection method for vector map and remote sensing imagery based on object heterogeneity[J]. Remote Sensing for Land & Resources, 2018, 30(1): 30-36.
[12] ZHU Hongchun, HUANG Wei, LIU Haiying, ZHANG Zhongfang, WANG Bin. Research on object-oriented remote sensing change detection method based on KL divergence[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 46-52.
[13] SU Tengfei, ZHANG Shengwei, LI Hongyu. Segmentation algorithm based on texture feature and region growing for high-resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 72-81.
[14] WANG Yu, FU Meichen, WANG Li, WANG Changyao. Tree-cotton intercropping land extraction based on multi-source high resolution satellite imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 152-159.
[15] HU Hualong, XUE Wu, QIN Zhiyuan. Extraction of residential area from high resolution images based on wavelet texture and primitive merging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech