Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (2) : 104-109     DOI: 10.6046/gtzyyg.2017.02.15
Contents |
Remote sensing disaster monitoring and evaluation model based on crowdsourcing
WANG Yuxian1, 2, DUAN Jianbo1, LIU Shibin1, MA Caihong1
1. Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, Beijing 100094, China;
2. University of the Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(802 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  To improve the time effectiveness of emergency response work toward natural disaster, this paper proposes a remote sensing disaster monitoring and evaluation model based on crowdsourcing, the strategy of dynamic voting consistency for disaster data evaluation is studied in detail, and the prototype system is realized based on the model. The model gathers the knowledge from hundreds of millions of users through the Internet to provide visual interpretation of high-resolution remote sensing images of disaster area quickly and effectively, so it achieves a rapid processing of image data, efficient collection of massive disaster data and real-time hazard assessment.
Keywords coastal reclamation      remote sensing      ensemble classification      object identification     
Issue Date: 03 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Junchao
LI Liwei
HU Shengwu
Cite this article:   
WU Junchao,LI Liwei,HU Shengwu. Remote sensing disaster monitoring and evaluation model based on crowdsourcing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 104-109.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.02.15     OR     https://www.gtzyyg.com/EN/Y2017/V29/I2/104
[1] 郭华东,刘良云,范湘涛,等.对地观测技术用于汶川和玉树地震灾害的研究[J].高校地质学报,2011,17(1):1-12.
Guo H D,Liu L Y,Fan X T,et al.Study of earth observation for disaster reduction in Wenchuan and Yushu earthquakes[J].Geological Journal of China Universities,2011,17(1):1-12.
[2] 陶和平,刘斌涛,刘淑珍,等.遥感在重大自然灾害监测中的应用前景——以5·12汶川地震为例[J].山地学报,2008,26(3):276-279.
Tao H P,Liu B T,Liu S Z,et al.Natural hazards monitoring using remote sensing:A case study of 5·12 Wenchuan earthquake[J].Journal of Mountain Science,2008,26(3):276-279.
[3] Barrington L,Ghosh S,Greene M,et al.Crowdsourcing earthquake damage assessment using remote sensing imagery[J].Annals of Geophysics,2011,54(6):680-687.
[4] Oliveira F,Ramos I.Crowdsourcing:A tool for organizational knowledge creation[C]//22nd European Conference on Information Systems.Tel Aviv,Israel:Association for Information Systems,2014.
[5] Doan A,Ramakrishnan R,Halevy A Y.Crowdsourcing systems on the world-wide web[J].Communications of the ACM,2011,54(4):86-96.
[6] 李勇军,缑西梅.基于“众包”的软件开发模式[J].计算机系统应用,2014,23(6):7-10.
Li Y J,Gou X M.Software development model based on crowdsourcing[J].Computer Systems & Applications,2014,23(6):7-10.
[7] Yan T X,Kumar V,Ganesan D.CrowdSearch:Exploiting crowds for accurate real-time image search on mobile phones[C]//Proceedings of the 8th International Conference on Mobile Systems,Applications,and Services.San Francisco,CA,United States:Association for Computing Machinery,2010:77-90.
[8] Goodchild M F.Citizens as sensors:The world of volunteered geography[J].GeoJournal,2007,69(4):211-221.
[9] Heipke C.Crowdsourcing geospatial data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(6):550-557.
[10] 岳德君,于 戈,申德荣,等.基于投票一致性的众包质量评估策略[J].东北大学学报:自然科学版,2014,35(8):1097-1101.
Yue D J,Yu G,Shen D R,et al.Crowdsourcing quality evaluation strategies based on voting consistency[J].Journal of Northeastern University:Natural Science,2014,35(8):1097-1101.
[11] Liu X,Lu M Y,Ooi B C,et al.CDAS:A crowdsourcing data analytics system[J].Proceedings of the VLDB Endowment,2012,5(10):1040-1051.
[12] 张志强,逄居升,谢晓芹,等.众包质量控制策略及评估算法研究[J].计算机学报,2013,36(8):1636-1649.
Zhang Z Q,Pang J S,Xie X Q,et al.Research on crowdsourcing quality control strategies and evaluation algorithm[J].Chinese Journal of Computers,2013,36(8):1636-1649.
[13] Jiang H B,Su Y Y,Jiao Q S,et al.Typical geologic disaster surveying in Wenchuan 8.0 earthquake zone using high resolution ground LiDAR and UAV remote sensing[C]//Proceedings of SPIE 9262,Lidar Remote Sensing for Environmental Monitoring XIV.Beijing,China:SPIE,2014:926219.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech