Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 56-61     DOI: 10.6046/gtzyyg.2018.04.09
|
Sparse coefficient NMF fusion via PCA united dictionary
Xiaofang SUN
Department of Geography, Minjiang College, Fuzhou 350121, China
Download: PDF(4216 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to reduce the influence of mixed pixel on dictionary, the author has constituted principal component analysis (PCA)united sparse dictionary from the first principal component extracted with sparse dictionary of panchromatic image and unmiximg image by the online dictionary learning algorithm and PCA. The sparse dictionary can include multi-spectral image and high-spatial resolution image features, while considering the mixed pixel problem. The sparse coefficients of panchromatic and multi-spectral images are calculated using PCA united sparse dictionary and orthogonal matching pursuit(OMP) algorithm, then the sparse coefficients of fusion image are calculated using nonnegative matrix factor(NMF) fusion algorithm, thus reconstructing fusion image. In consideration of the root mean square error of the reconstructed image and the limitation of computing, research on the dictionary matrix size shows that the final matrix size of sparse dictionary is 64×480. An analysis of five quantitative assessment indexes demonstrates that more texture details and multi-spectral information can be obtained by the proposed fusion than by united sparse dictionary NMF fusion, wavelet fusion and PCA fusion. The proposed method can obtain better fusion result.

Keywords PCA united sparse dictionary      online dictionary learning algorithm      OMP algorithm      NMF fusion     
:  P23  
Issue Date: 07 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaofang SUN
Cite this article:   
Xiaofang SUN. Sparse coefficient NMF fusion via PCA united dictionary[J]. Remote Sensing for Land & Resources, 2018, 30(4): 56-61.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.04.09     OR     https://www.gtzyyg.com/EN/Y2018/V30/I4/56
Fig.1  Sparse coefficient NMF fusion via PCA united dictionary
联合稀疏
字典个数
联合字典
(行×列)
稀疏系数
(行×列)
重构影像平
RMSE
80 64×80 80×255 025 0.099
160 64×160 160×255 025 0.067
240 64×240 240×255 025 0.063
320 64×320 320×255 025 0.059
400 64×400 400×255 025 0.058
480 64×480 480×255 025 0.054
Tab.1  Dictionary coefficients and RMSE
Fig.2  RMSE of reconstructed image bands
Fig.3  United dictionary and PCA united sparse dictionary
字典 方差 字典 方差
分解影像1字典 0.062 PCA影像1字典 0.072
分解影像2字典 0.055 PCA影像2字典 0.066
分解影像3字典 0.068 PCA影像3字典 0.078
分解影像4字典 0.068 PCA影像4字典 0.077
分解影像5字典 0.062 PCA影像5字典 0.072
分解影像6字典 0.071 PCA影像6字典 0.080
分解影像7字典 0.072 PCA影像7字典 0.081
分解影像8字典 0.074 PCA影像8字典 0.083
联合字典 0.067 PCA联合稀疏字典 0.076
Tab.2  Comparison of variance of united dictionary and PCA united sparse dictionary
Fig.4  Fusion image
评价指标 PCA联合稀疏
字典NMF融合
联合字典
NMF融合
小波融合 PCA融合
信息熵 7.203 7.027 7.186 7.164
清晰度 13.250 10.565 11.386 10.020
空间频率 22.167 19.232 20.063 18.702
扭曲程度 16.542 28.865 21.465 26.863
偏差指数 0.154 0.284 0.183 0.287
Tab.3  Fusion assessment indexes
[1] 向馗, 李炳南 . 主元分析中的稀疏性[J]. 电子学报, 2012,40(12):2525-2532.
[1] Xiang K, Li B N . Sparsity in principal component analysis:A survey[J]. Acta Electronica Sinica, 2012,40(12):2525-2532.
[2] 梁锐华, 成礼智 . 基于小波域字典学习方法的图像双重稀疏表示[J]. 国防科技大学学报, 2012,34(4):126-131.
doi: 10.3969/j.issn.1001-2486.2012.04.025 url: http://d.wanfangdata.com.cn/Periodical/gfkjdxxb201204025
[2] Liang R H, Cheng L Z . Double sparse image representation via learning dictionaries in wavelet domain[J]. Journal of National University of Defense Technology, 2012,34(4):126-131.
[3] Iqbal M, Chen J . Unification of image fusion and super-resolution using jointly trained dictionaries and local information contents[J]. IET Image Processing, 2012,6(9):1299-1310.
doi: 10.1049/iet-ipr.2012.0122 url: https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2012.0122
[4] 孙玉宝, 韦志辉, 肖亮 , 等. 多形态稀疏性正则化的图像超分辨率算法[J]. 电子学报, 2010,38(12):2898-2903.
doi: url: http://www.cqvip.com/Main/Detail.aspx?id=36597444
[4] Sun Y B, Wei Z H, Xiao L , et al. Multimorphology sparsity regularized image super-resolution[J]. Acta Electronica Sinica, 2010,38(12):2898-2903.
[5] Liu Y, Wang Z F. Multi-focus image fusion based on sparse representation with adaptive sparse domain selection[C]// 2013 Seventh International Conference on Image and Graphics.Qingdao:IEEE, 2013: 591-596.
[6] Huang B, Song H H, Cui H B , et al. Spatial and spectral image fusion using sparse matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,52(3):1693-1704.
doi: 10.1109/TGRS.2013.2253612 url: http://ieeexplore.ieee.org/document/6516902
[7] Song H H, Huang B, Liu Q S , et al. Improving the spatial resolution of Landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,53(3):1195-1204.
doi: 10.1109/TGRS.2014.2335818 url: http://ieeexplore.ieee.org/document/6866167/
[8] Li S T, Yin H T, Fang L Y . Remote sensing image fusion via sparse representations over learned dictionaries[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(9):4779-4789.
doi: 10.1109/TGRS.2012.2230332 url: http://ieeexplore.ieee.org/document/6428669/
[9] 魏士俨, 李群智, 马友青 , 等. 虹湾影像超分辨率重建[J]. 光电工程, 2012,39(12):86-90.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ121214000106B9EbHd
[9] Wei S Y, Li Q Z, Ma Y Q , et al. Sinus iridum images super resolution reconstruction[J]. Opto-Electronic Engineering, 2012,39(12):86-90.
[10] 张垚, 徐斌, 周尚波 , 等. 基于稀疏表示的自适应图像超分辨率重建算法[J]. 计算机应用研究, 2013,30(3):938-941.
doi: 10.3969/j.issn.1001-3695.2013.03.077 url: http://www.cqvip.com/QK/93231X/201303/44961029.html
[10] Zhang Y, Xu B, Zhou S B , et al. Image super-resolution with adaptive regularization sparse representation[J]. Application Research of Computers, 2013,30(3):938-941.
[11] 薛模根, 徐国明 . 聚类字典下集中式稀疏表示的幻觉脸重建方法[J]. 系统工程与电子技术, 2014,36(1):187-193.
doi: 10.3969/j.issn.1001-506X.2014.01.30 url: http://d.wanfangdata.com.cn/Periodical/xtgcydzjs201401030
[11] Xue M G, Xu G M . Hallucinating faces reconstruction method via centralized sparse representation based on clustered dictionary[J]. Systems Engineering and Electronics, 2014,36(1):187-193.
[12] 何同弟, 李见为 . 基于自适应稀疏表示的高光谱遥感图像分类[J]. 系统工程与电子技术, 2013,35(9):1994-1998.
doi: 10.3969/j.issn.1001-506X.2013.09.32 url: http://d.wanfangdata.com.cn/Periodical/xtgcydzjs201309032
[12] He T D, Li J W . Hyperspectral remote sensing image classification based on adaptive sparse representation[J]. Systems Engineering and Electronics, 2013,35(9):1994-1998.
[13] 严春满, 郭宝龙, 易盟 . 自适应字典学习的多聚焦图像融合[J]. 中国图象图形学报, 2012,17(9):1144-1149.
[13] Yan C M, Guo B L, Yi M . Multi-focus image fusion using adaptive dictionary learning method[J]. Journal of Image and Graphics, 2012,17(9):1144-1149.
[14] 刘婷, 程建 . 小波变换和稀疏表示相结合的遥感图像融合[J]. 中国图象图形学报, 2013,18(8):1045-1053.
doi: 10.11834/jig.20130820 url: http://d.wanfangdata.com.cn/Periodical/zgtxtxxb-a201308020
[14] Liu T, Cheng J . Remote sensing image fusion with wavelet transform and sparse representation[J]. Journal of Image and Graphics, 2013,18(8):1045-1053.
[15] 王斐, 梁晓庚, 崔彦凯 , 等. 非负矩阵分解和新轮廓波变换的图像融合[J]. 计算机工程与应用, 2013,49(5):150-153.
doi: 10.3778/j.issn.1002-8331.1111-0555 url: http://www.cqvip.com/QK/91690X/201305/44967541.html
[15] Wang F, Liang X G, Cui Y K , et al. Image fusion combined with NMF and new contourlet transform[J]. Computer Engineering and Applications, 2013,49(5):150-153.
[1] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[2] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[3] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[4] ZHAO Xiaochen, WU Haonan, LI Linyi, MENG Lingkui. GPU-based parallel image processing algorithm for flood and drought monitoring[J]. Remote Sensing for Natural Resources, 2021, 33(3): 107-113.
[5] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[6] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[7] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[8] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[9] BI Weihua, ZHAO Xingtao, YANG Huachao, BIAN Hefang, ZHANG Qiuzhao. Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications[J]. Remote Sensing for Land & Resources, 2021, 33(2): 248-255.
[10] JI Min, ZHANG Chao, ZHAO Jianwei, YAN Juan, LIANG Liang. Temporal and spatial dynamics of spring drought in Qinghai-Tibet region based on VCI index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 152-157.
[11] XU Yun, XU Aiwen. Classification and detection of cloud, snow and fog in remote sensing images based on random forest[J]. Remote Sensing for Land & Resources, 2021, 33(1): 96-101.
[12] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[13] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[14] SU Longfei, LI Zhengxuan, GAO Fei, YU Min. A review of remote sensing image water extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 9-11.
[15] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech