|
Abstract Normalized difference vegetation index (NDVI) trends can approximate the trend of “greening” or “browning” of vegetation and reflect the adaptation process of vegetation to global change. In this paper, an NDVI trend analysis method combining empirical mode decomposition (EMD) and Mann-Kendall (MK) significance test is proposed on vegetation monotone trend detection. The method includes mainly two steps: firstly, EMD is used to decompose NDVI time series into a finite number of intrinsic mode functions (IMF), and these components contain the local characteristic information of different time scales of the original signal. The first component is a high-frequency component, the subsequent component frequency gradually decreases, and the residual is a monotonic function, indicating the average trend. From the decomposition, the NDVI variation trend along with time is extracted naturally. Secondly, the MK significance test is used to detect the monotonicity of the trend varied, that is, to detect that the trend is monotonically increasing or monotonically decreasing, the monotonically increasing is corresponding to the trend of vegetation getting “greening”, and the monotonically decreasing is corresponding to the trend of vegetation getting “browning”. The test data are MODIS NDVI time series of 16 days from 2006 to 2015. The analysis of the trend detection of those NDVI time series shows that the method proposed in this paper is an effective method for time series trend analysis and has a wide application prospect.
|
Keywords
EMD
MK significance test
NDVI
greening of vegetation
browning of vegetation
|
|
Corresponding Authors:
Ping TANG
E-mail: tangping@radi.ac.cn
|
Issue Date: 23 May 2019
|
|
|
[1] |
Foley J A, Levis S, Costa M H , et al. Incorporating dynamic vegetation cover within global climate models[J]. Ecological Applications, 2000,10(6):1620-1632.
doi: 10.1890/1051-0761(2000)010[1620:IDVCWG]2.0.CO;2
url: http://doi.wiley.com/10.1890/1051-0761(2000)010[1620:IDVCWG]2.0.CO;2
|
[2] |
IPCC. 4th Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva:IPCC, 2007.
|
[3] |
Cai X L, Sharma B R . Integrating remote sensing,census and weather data for an assessment of rice yield,water consumption and water productivity in the Indo-Gangetic River Basin[J]. Agricultural Water Management, 2010,97(2):309-316.
doi: 10.1016/j.agwat.2009.09.021
url: https://linkinghub.elsevier.com/retrieve/pii/S037837740900290X
|
[4] |
Sims D A, Rahman A F, Cordova V D , et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS[J]. Remote Sensing of Environment, 2008,112(4):1633-1646.
doi: 10.1016/j.rse.2007.08.004
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425707004105
|
[5] |
Yu D Y, Shi P J, Shao H B , et al. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model[J]. International Journal of Remote Sensing, 2009,30(18):4851-4866.
doi: 10.1080/01431160802680552
url: https://www.tandfonline.com/doi/full/10.1080/01431160802680552
|
[6] |
Metternicht G, Zinck J A, Blanco P D , et al. Remote sensing of land degradation:Experiences from Latin America and the Caribbean[J]. Journal of Environmental Quality, 2010,39(1):42-61.
doi: 10.2134/jeq2009.0127
url: https://www.agronomy.org/publications/jeq/abstracts/39/1/42
|
[7] |
Wessels K J, Prince S D, Malherbe J , et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa[J]. Journal of Arid Environments, 2007,68(2):271-297.
doi: 10.1016/j.jaridenv.2006.05.015
url: https://linkinghub.elsevier.com/retrieve/pii/S014019630600190X
|
[8] |
Zika M, Erb K H . The global loss of net primary production resulting from human-induced soil degradation in drylands[J]. Ecological Economics, 2009,69(2):310-318.
doi: 10.1016/j.ecolecon.2009.06.014
url: https://linkinghub.elsevier.com/retrieve/pii/S0921800909002559
|
[9] |
Prince S D, Tucker C J . Satellite remote sensing of rangelands in Botswana II.NOAA AVHRR and herbaceous vegetation[J]. International Journal of Remote Sensing, 1986,7(11):1555-1570.
doi: 10.1080/01431168608948953
url: https://www.tandfonline.com/doi/full/10.1080/01431168608948953
|
[10] |
Tucker C J, Vanpraet C L, Sharman M J , et al. Satellite remote sensing of total herbaceous biomass production in the senegalese sahel:1980—1984[J]. Remote Sensing of Environment, 1985,17(3):233-249.
doi: 10.1016/0034-4257(85)90097-5
url: https://linkinghub.elsevier.com/retrieve/pii/0034425785900975
|
[11] |
Alcaraz-Segura D, Chuvieco E, Epstein H E , et al. Debating the greening vs.browning of the North American boreal forest:Differences between satellite datasets[J]. Global Change Biology, 2010,16(2):760-770.
doi: 10.1111/gcb.2010.16.issue-2
url: http://blackwell-synergy.com/doi/abs/10.1111/gcb.2010.16.issue-2
|
[12] |
Bai Z G, Dent D L, Olsson L , et al. Proxy global assessment of land degradation[J]. Soil Use and Management, 2008,24(3):223-234.
doi: 10.1111/sum.2008.24.issue-3
url: http://blackwell-synergy.com/doi/abs/10.1111/sum.2008.24.issue-3
|
[13] |
Beurs K D M, Henebry G M . Trend analysis of the pathfinder AVHRR land (PAL) NDVI data for the deserts of central Asia[J]. IEEE Geoscience and Remote Sensing Letters, 2004,1(4):282-286.
doi: 10.1109/LGRS.2004.834805
url: http://ieeexplore.ieee.org/document/1347123/
|
[14] |
Verbesselt J, Hyndman R, Zeileis A , et al. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series[J]. Remote Sensing Environment, 2010,114(12):2970-2980.
doi: 10.1016/j.rse.2010.08.003
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710002336
|
[15] |
Belle G V, Hughes J P . Non-parametric tests for trend in water quality[J]. Water Resources Research, 1984,20(1):127-136.
doi: 10.1029/WR020i001p00127
url: http://doi.wiley.com/10.1029/WR020i001p00127
|
[16] |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]//Proceedings of the Royal Society of London, 1998,454:903-995.
|
[17] |
Yu D J, Cheng J S, Yang Y . Application of EMD method and Hilbert spectrum to the fault diagnoisis of roller bearings[J]. Mechanical Systems and Signal Processing, 2005,19(2):259-270.
doi: 10.1016/S0888-3270(03)00099-2
url: https://linkinghub.elsevier.com/retrieve/pii/S0888327003000992
|
[18] |
吴征镒 . 中国植被[M]. 北京: 科学出版社, 1980.
|
[18] |
Wu Z Y. Chinese Vegetation[M]. Beijing: Science Press, 1980.
|
[19] |
Mann H B . Non-parametric tests against trend[J]. Econometrica, 1945,13:245-259.
doi: 10.2307/1907187
url: https://www.jstor.org/stable/1907187?origin=crossref
|
[20] |
Kendall M G . Rank Correlation Methods[M]. London:Charles Griffin Company, 1975: 20-22
|
[21] |
Douglas E M, Vogel R M, Kroll C N . Trends in floods and low flows in the United States:Impact of spatial correlation[J]. Journal of Hydrology, 2000,240(1-2):90-105.
doi: 10.1016/S0022-1694(00)00336-X
url: https://linkinghub.elsevier.com/retrieve/pii/S002216940000336X
|
[22] |
Abdul-Aziz O I, Burn D H . Trends and variability in the hydrological regime of the Mackenzie River Basin[J]. Journal of Hydrolo-gy, 2006,319(1-4):282-294.
doi: 10.1016/j.jhydrol.2005.06.039
url: https://linkinghub.elsevier.com/retrieve/pii/S0022169405003665
|
[23] |
王艳君, 姜彤, 许崇育 . 长江流域20 cm蒸发皿蒸发量的时空变化[J]. 水科学进展, 2006,17(6):830-833.
|
[23] |
Wang Y J, Jiang T, Xu C Y . Spatial-temporal change of 20 cm pan evaporation over the Yangtze River Basin[J]. Advances in Water Science, 2006,17(6):830-833.
|
[24] |
丛振涛, 倪广恒, 杨大文 , 等. “蒸发悖论”在中国的规律分析[J]. 水科学进展, 2008,19(2):147-152.
|
[24] |
Cong Z T, Ni G H, Yang D W , et al. Evaporation paradox in China[J]. Advances in Water Science, 2008,19(2):147-152.
|
[25] |
Chen J, Jönsson P, Tamura M , et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment, 2004,91(3-4):332-344.
doi: 10.1016/j.rse.2004.03.014
url: https://linkinghub.elsevier.com/retrieve/pii/S003442570400080X
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|