Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 149-156     DOI: 10.6046/gtzyyg.2020.03.20
|
A study of the variation and driving factors of the water area of the terminal lake of inland river: A case study of Taitema Lake region
HUO Tianci1(), YAN Wei2(), MA Xiaofei1,3
1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2. School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(4621 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Terminal lake, which is an important part of oasis ecosystem in the lower reaches of inland river in arid region, has the functions of water conservation, wind prevention and sand fixation. However, for nearly half a century, the terminal lake of inland river has been shrinking under the influence of climate change and human activities, and the ecological environment around the lake has been deteriorating, which has seriously threatened the regional social development. In order to explore the changes and driving factors of the water area of the terminal lake in the arid region, this paper took the Taitema Lake region as an example, selected nine Landsat TM/OLI remote sensing images from 1986 to 2019, and extracted and analyzed the change characteristics and driving factors of the water area of the Taitema Lake region. The results showed that the water area of the study region increased by 163.93 km 2 in the past 34 years. In terms of spatial distribution, water area of the study region was scattered around the lower reaches of Qarqan River before the 21st century, and mainly distributed around Taitema Lake since the 21st century. The center of gravity of the water area in the study region experienced four processes: rapid westward shift in the late 1980s, slow eastward shift in the 1990s, rapid eastward shift in the late 1990s to early 2000s, and eastward shift in the fluctuation since the 21st century. Taking the water transport to the lower reaches of Tarim River as the boundary, the water area before water transport is mainly affected by the comprehensive effects of regional natural factors, with precipitation as the main driving factor (r 2=0.825). After water transport, the water transport process with human intervention is the leading factor (r 2=0.977) affecting the change of water area in the study region. With the continuous water transfer to the downstream of Tarim River, the ecological environment of Taitema Lake has been restored continuously. In order to prevent the lake from overflowing and spilling eastward into Lop Nor, it is necessary to explore the maximum water capacity of Taitema Lake so as to reasonably control the water transfer.

Keywords terminal lake      Taitema Lake      water area change      ecological water transport      remote sensing     
:  TP79  
Corresponding Authors: YAN Wei     E-mail: huotianci2@163.com;jw@xynu.edu.cn
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tianci HUO
Wei YAN
Xiaofei MA
Cite this article:   
Tianci HUO,Wei YAN,Xiaofei MA. A study of the variation and driving factors of the water area of the terminal lake of inland river: A case study of Taitema Lake region[J]. Remote Sensing for Land & Resources, 2020, 32(3): 149-156.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.20     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/149
Fig.1  Overview of Taitema Lake region
编号 传感器类型 行列号 获取时间 空间分辨率/m
1 TM 141/033 1986-06-17 30
2 TM 141/033 1991-08-18 30
3 TM 141/033 1994-06-07 30
4 TM 141/033 1998-09-06 30
5 TM 141/033 2002-06-29 30
6 TM 141/033 2007-06-11 30
7 TM 141/033 2011-08-25 30
8 OLI 141/033 2015-08-20 30
9 OLI 141/033 2019-07-14 30
Tab.1  Information of remote sensing images
Fig.2  Spatial-temporal variation of the water area in the Taitema Lake region from 1986 to 2019
Fig.3  Changes of the water area of Taitema Lake region from 1986 to 2019
Fig.4  Displacement of the center of water area gravity in Taitema Lake region from 1986 to 2019
研究时段 转移距离/km 转移角度/(°) 方位描述
1986—1991年 27.23 175.12 北偏西85.12°
1991—1994年 2.78 170.43 北偏西80.43°
1994—1998年 5.46 26.62 北偏东63.38°
1998—2002年 35.41 10.43 北偏东79.57°
2002—2007年 4.19 -164.72 南偏西74.72°
2007—2011年 6.48 6.94 北偏东83.06°
2011—2015年 5.83 149.12 北偏西59.12°
2015—2019年 11.50 -18.18 南偏东71.82°
Tab.2  Displacement of the center of water area gravity
研究时段 水域变化
面积/km2
R/% Rs/%
1986—1991年 11.11 80.87 16.17
1991—1994年 -16.02 -64.44 -21.48
1994—1998年 5.09 57.65 14.41
1998—2002年 65.32 468.88 117.22
2002—2007年 -3.93 -4.95 -0.99
2007—2011年 53.07 70.46 17.61
2011—2015年 -47.54 -37.02 -9.26
2015—2019年 96.82 119.75 29.94
1986—2019年 163.93 1 193.00 36.15
Tab.3  Changes of water area, range of change and dynamic degree in Taitema Lake region
Fig.5  Changes of average annual air temperature and precipitation in the study area
Fig.6  Changes of the annual discharge of the Qarqan River and water transport to lower reaches of Tarim River
[1] 陈曦, 包安明, 王新平, 等. 塔里木河近期综合治理工程生态成效评估[J]. 中国科学院院刊, 2017,32(1):20-28.
[1] Chen X, Bao A M, Wang X P, et al. Ecological effect evaluation of comprehensive control project in Tarim River basin[J]. Bulletin of Chinese Academy of Sciences, 2017,32(1):20-28.
[2] 杨鹏年, 邓铭江, 李霞, 等. 塔里木河下游间歇输水下地下水响应宽度——以塔里木河下游英苏断面为例[J].干旱区研究, 2008(3):331-335.
url: http://d.wanfangdata.com.cn/Periodical_ghqyj200803004.aspx
[2] Yang P N, Deng M J, Li X, et al. Respond width of groundwater level after conveying stream water to the lower reaches of the Tarim River,Xinjiang:A case study along the Yengisu section in the lower reaches of Tarim River[J].Arid Zone Research 2008(3):331-335.
[3] 徐海量, 樊自立, 杨鹏年, 等. 塔里木河近期治理评估及对编制流域综合规划建议[J]. 干旱区地理, 2015,38(4):645-651.
url: http://alg.xjegi.com//CN/abstract/abstract8874.shtml
[3] Xu H L, Fan Z L, Yang P N, et al. Short term evaluation and advice of compiling planning for the Tarim River basin in future[J]. Arid Land Geography, 2015,38(4):645-651.
url: http://alg.xjegi.com//CN/abstract/abstract8874.shtml
[4] 杨戈, 郭永平. 塔里木河下游末端实施生态输水后植被变化与展望[J].中国沙漠, 2004(2):55-60.
[4] Yang Y, Guo Y P. The change and prospect of vegetation in the end of the lower reaches of Tarim River after ecological water delivering[J].Journal of Desert Research 2004(2):55-60.
[5] 李丽君, 张小清, 陈长清, 等. 近20 a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018,41(2):238-247.
[5] Li L J, Zhang X Q, Chen C Q, et al. Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years[J]. Arid Land Geography, 2018,41(2):238-247.
[6] 王雅梅, 张青青, 徐海量, 等. 生态输水前后台特玛湖植物多样性变化特征[J]. 干旱区研究, 2019,36(5):1186-1193.
[6] Wang Y M, Zhang Q Q, Xu H L, et al. Change of plant diversity in the Taitema Lake area before and after implementing the ecological water conveyance[J]. Arid Zone Research, 2019,36(5):1186-1193.
[7] 钟家骅. 塔里木河流域植被生态变化研究[D]. 西安:长安大学, 2018.
[7] Zhong J H. The changes of the vegetation ecosystems in Tarim River Basin[D]. Xi’an:Chang’an University, 2018.
[8] 郭继凯. 塔里木河流域植被覆盖对气候变化和人类活动的响应[D]. 北京:北京林业大学, 2016.
[8] Guo J K. Responses of vegetation coverage to climate change and human activities in the Tarim River basin[D]. Beijing:Beijing Forestry University, 2016.
[9] 黄粤, 包安明, 王士飞, 等. 间歇性输水影响下的2001—2011年塔里木河下游生态环境变化[J]. 地理学报, 2013,68(9):1251-1262.
doi: 10.11821/dlxb201309008 url: http://www.geog.com.cn/CN/abstract/abstract21814.shtml
[9] Huang Y, Bao A M, Wang S F, et al. Eco-environmental change in the lower Tarim River under the influence of intermittent water transport[J]. Acta Geographica Sinica, 2013,68(9):1251-1262.
doi: 10.11821/dlxb201309008 url: http://www.geog.com.cn/CN/abstract/abstract21814.shtml
[10] 阿布都米吉提·阿布力克木, 阿里木江·卡斯木, 艾里西尔·库尔班, 等. 近40年台特玛—康拉克湖泊群水域变化遥感监测[J]. 湖泊科学, 2014,26(1):46-54.
[10] Ablekim A, Kasimu A, Kurban A, et al. Monitoring the water area changes in Tetima-Kanglayka lakes region over the past four decades by remotely sensed data[J]. Journal of Lake Sciences, 2014,26(1):46-54.
doi: 10.18307/2014.0106 url: <![CDATA[http://www.jlakes.org/ch/reader/view_abstract.aspx?doi=10.18307/2014.0106]]>
[11] 樊自立, 徐海量, 张鹏, 等. 新疆车尔臣河及其水资源利用研究[J]. 干旱区研究, 2014,31(1):20-26.
url: http://azr.xjegi.com/CN/abstract/abstract8878.shtml
[11] Fan Z L, Xu H L, Zhang P, et al. The Qarqan River in Xinjiang and its water resources utilization[J]. Arid Zone Research, 2014,31(1):20-26.
[12] 王姝怡. 近30年台特玛湖地区生态环境演变及影响因素研究[D]. 石家庄:河北师范大学, 2019.
[12] Wang S Y. Study on the evolution and driving factors of ecological environment in the Taitema Lake area in recent 30 years[D]. Shijiazhuang:Hebei Normal University, 2019.
[13] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 1996,17(7):1425-1432.
[14] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报, 2005(5):589-595.
[14] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J].Journal of Remote Sensing 2005(5):589-595.
[15] 吴成永, 陈克龙, 曹广超, 等. 近30年来青海省风蚀气候侵蚀力时空差异及驱动力分析[J]. 地理研究, 2018,37(4):717-730.
[15] Wu C Y, Chen K L, Cao G C, et al. The spatial and temporal differences and driving forces of wind erosion climatic erosivity in Qinghai Province from 1984 to 2013[J]. Geographical Research, 2018,37(4):717-730.
[16] 胡尔西别克·孜依纳力, 毋兆鹏, 哈孜亚·包浪提将. 新疆玛纳斯湖近40年间时空变化图谱及其驱动机制[J]. 国土资源遥感, 2018,30(1):217-223.doi: 10.6046/gtzyyg.2018.01.30.
[16] Ziyinali H, Wu Z P, Baolangtijiang K. Lake changes in spatial evolution and driving force for the water area change of the Manas lake in Xinjiang in the past forty years[J]. Remote Sensing for Land and Resources, 2018,30(1):217-223.doi: 10.6046/gtzyyg.2018.01.30.
[17] 黄娉婷, 张晓平. 大都市区工业重心时空变动轨迹分析:以天津市为例[J]. 经济地理, 2012,32(3):89-95.
[17] Huang P T, Zhang X P. Analysis of temporal and spatial movement of the gravity center of city industry:A case study of Tianjin[J]. Economic Geography, 2012,32(3):89-95.
[18] 邓铭江, 杨鹏年, 周海鹰, 等. 塔里木河下游水量转化特征及其生态输水策略[J]. 干旱区研究, 2017,34(4):717-726.
[18] Deng M J, Yang P N, Zhou H Y, et al. Water conversion and strategy of ecological water conveyance in the lower reaches of the Tarim River[J]. Arid Zone Research, 2017,34(4):717-726.
[19] 朱长明, 李均力, 沈占锋, 等. 塔里木河下游生态环境变化时序监测与对比分析[J]. 地球信息科学学报, 2019,21(3):437-444.
[19] Zhu C M, Li J L, Shen Z F, et al. Time series monitoring and comparative analysis on eco-environment change in the lower reaches of the Tarim River[J]. Journal of Geo-Information Science, 2019,21(3):437-444.
[20] 冉津江, 季明霞, 黄建平, 等. 中国北方干旱区和半干旱区近60年气候变化特征及成因分析[J]. 兰州大学学报(自然科学版), 2014,50(1):46-53.
[20] Ran J J, Ji M X, Huang J P, et al. Characteristics and factors of climate change in arid and semi-arid areas over northern China in the recent 60 years[J]. Journal of Lanzhou University(Natural Sciences), 2014,50(1):46-53.
[21] 胡实, 莫兴国, 林忠辉. 未来气候情景下我国北方地区干旱时空变化趋势[J]. 干旱区地理, 2015,38(2):239-248.
[21] Hu S, Mo X G, Lin Z H, et al. Projections of spatial-temporal variation of drought in north China[J]. Arid Land Geography, 2015,38(2):239-248.
[22] 李丽, 曾庆伟, 周会珍, 等. 新疆车尔臣河绿色走廊河湖湿地变化及原因分析[J]. 干旱区研究, 2012,29(2):233-237.
[22] Li L, Zeng Q W, Zhou H Z, et al. Change and causes of the river-lake marshes along the green corridor at the lower reaches of the Qarqan River[J]. Arid Zone Research, 2012,29(2):233-237.
[23] 樊自立, 徐海量, 傅荩仪, 等. 台特玛湖湿地保护研究[J]. 第四纪研究, 2013,33(3):594-602.
[23] Fan Z L, Xu H L, Fu J Y, et al. Study on protection of wet land of Taitema Lake[J]. Quaternary Sciences, 2013,33(3):594-602.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech