Please wait a minute...
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 168-175     DOI: 10.6046/zrzyyg.2021198
Remote sensing-based green space evolution in Tangshan and its influence on heat island effect
WANG Siyao1(), ZHAO Chunlei2,3, CHEN Xia4, LIU Dan5()
1. Tangshan Meteorological Bureau, Tangshan 063000, China
2. Hebei Institute of Meteorological Sciences, Shijiazhuang 050000, China
3. Key Laboratory of Meteorology and Ecological Environment of Hebei Province, Shijiazhuang 050000, China
4. Hebei Climate Center, Shijiazhuang 050000, China
5. Fengnan District Meteorological Bureau, Tangshan 063000, China
Download: PDF(3435 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The urban environment is an important issue in the whole world, and the urban heat island (UHI) effect is one of the important research topics. Owing to the expansion of the urban area and the increase in population, the urban heat island effect has also significantly changed. With the Landsat imageries as the data source and the central urban area of Tangshan City, Hebei Province as the main study area, this study analyzed the impacts of green space evolution on urban temperature change using the methods such as the radiative transfer equation algorithm, supervised classification, gravity center shift, and random sampling. The results are as follows. ① During the study period, the development direction and area of UHIs were roughly consistent with the scale and direction of rapid urban development. Moreover, the migration directions of the gravity centers of the UCI/UHIs were similar to those of the green space and urban area, with the migration distance of the gravity centers of UCIs greater than that of the UHIs. ② The urban green space (UGS) has been continuously lost during the study period, with the largest loss area of approximately 55.79 km2 occurring in agricultural land. Moreover, the largest increased area occurred in urban land and was approximately 47.85 km2. ③ The evolutionary trends of UCIs/UHIs were inconsistent with those of the UGS in different periods. This result may be related to the stock of green space. ④ The cooling effect on the urban surface (-0.16 ℃) induced by green space expansion was much smaller than the warming effect on the urban surface (6.37 ℃) caused by green space loss. The research results will provide a reference for urban planning in order to rationally arrange green space, retain sufficient green space, and effectively reduce the development speed of UHIs.

Keywords urban heat island      landsat      green space evolution      temperature influences     
ZTFLH:  TP79  
Corresponding Authors: LIU Dan     E-mail:;
Issue Date: 20 June 2022
E-mail this article
E-mail Alert
Articles by authors
Siyao WANG
Chunlei ZHAO
Cite this article:   
Siyao WANG,Chunlei ZHAO,Xia CHEN, et al. Remote sensing-based green space evolution in Tangshan and its influence on heat island effect[J]. Remote Sensing for Natural Resources, 2022, 34(2): 168-175.
URL:     OR
Fig.1  Changes of temperature distribution in the downtown area of Tangshan from 1993 to 2019
Fig.2  Green space evolution in the downtown area of Tangshan from 1993 to 2019
Fig.3  Change trend of UCI/UHI/UGS area and evolution rate
低温区 次低
中温区 次高
高温区 超高
8.27 36.76 38.99 44.28 30.33 8.81
5.50 13.90 34.87 54.60 43.97 14.61
面积变化 -2.78 -22.86 -4.12 10.32 13.65 5.80
Tab.1  Transfer area of temperature grades in the downtown area of Tangshan (km2)

绿色空间扩张 绿色空间不变 绿色空间损失
面积/km2 速率/(km2·a-1) 面积/km2 速率/(km2·a-1) 面积/km2 速率/(km2·a-1)
1993—2000年 8.11 1.16 61.3 8.76 36.36 5.48
2000—2003年 8.59 2.86 42.65 14.22 26.76 8.92
2003—2009年 14.02 2.34 27.85 4.64 23.31 3.89
2009—2014年 9.10 1.82 24.00 4.80 17.72 3.54
2014—2018年 4.20 1.05 9.55 2.39 22.80 5.70
2018—2019年 5.32 5.32 12.11 12.11 1.64 1.64
Tab.2  Changes of UGS area and evolution rate in the downtown area of Tangshan
时间 水体 城镇 耕地 林地 裸地
总和(1993年) 1.61 70.27 86.1 9.94 0.03
总和(2019年) 3.14 118.12 30.31 9.08 7.30
面积变化 1.53 47.85 -55.79 -0.86 7.27
Tab.3  Transfer area of LULC in the downtown area of Tangshan (km2)
Fig.4  Movement of the gravity center of UGS/UCI and Urban/UHI
绿色空间演变 绿色空间扩张 绿色空间交换 绿色空间损失
温度变化/℃ -0.16 3.00 6.37
Tab.4  Temperature effect of UGS evolution
[1] 潘莹, 崔林林, 刘昌脉, 等. 基于MODIS数据的重庆市城市热岛效应时空分析[J]. 生态学杂志, 2018, 37(12):3736-3745.
[1] Pan Y, Cui L L, Liu C M, et al. Spatiotemporal distribution of urban heat island effect based on MODIS data in Chongqing,China[J]. Chinese Journal of Ecology, 2018, 37(12):3736-3745.
[2] 彭少麟, 周凯, 叶有华, 等. 城市热岛效应研究进展[J]. 生态学杂志, 2005, 14(4):574-579.
[2] Peng S L, Zhou K, Ye Y H, et al. Research progress in urban heat island[J]. Ecology and Environment, 2005, 14(4):574-579.
[3] 王文杰, 申文明, 刘晓曼, 等. 基于遥感的北京市城市化发展与城市热岛效应变化关系研究[J]. 环境科学研究, 2006, 19(2):44-48.
[3] Wang W J, Shen W M, Liu X M, et al. Research on the relation of the urbanization and urban heat island effect changes in Beijing based on remote sensing[J]. Research of Environmental Sciences, 2006, 19(2):44-48.
[4] 张艳, 鲍文杰, 余琦, 等. 超大城市热岛效应的季节变化特征及其年际差异[J]. 地球物理学报, 2012, 55(4):1121-1128.
[4] Zhang Y, Bao W J, Yu Q, et al. Study on seasonal variations of the urban heat island and its interannual changes in a typical Chinese megacity[J]. Chinese J Geophys, 2012, 55(4):1121-1128. (in Chinese)
[5] 刘航, 申格, 黄青, 等. 近10a武汉市城市热岛效应演变及其与土地利用变化的关系[J]. 长江流域资源与环境, 2017, 26(9):1466-1475.
[5] Liu H, Shen G, Huang Q, et al. Evolution of urban heat island effect and its relationship with land use change in Wuhan City in recent 10 years[J]. Resources and Environment in the Yangtze Basin, 2017, 26(9):1466-1475.
[6] Ren Z B, He X Y, Zheng H F, et al. Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement[J]. Forests, 2013, 4(4): 868-886.
doi: 10.3390/f4040868 url:
[7] 花利忠, 孙凤琴, 陈乔娜, 等. 基于Landsat-8影像的沿海城市公园冷岛效应——以厦门为例[J]. 生态学报, 2020, 40(22):8147-8157.
[7] Hua L Z, Sun F Q, Chen J N, et al. Quantifying the cool-island effects of urban parks using Landsat-8 imagery in a coastal city,Xiamen,China[J]. Acta Ecologica Sinica, 2020, 40(22): 8147-8157.
[8] Jaganmohan M, Knapp S, Buchmann C M, et al. The bigger,the better? The influence of urban green space design on cooling effects for residential areas[J]. Journal of Environmental Quality, 2016, 45(1):134-145.
doi: 10.2134/jeq2015.01.0062 url:
[9] Ren Y, Deng L Y, Zuo S D, et al. Quantifying the influences of various ecological factors on land surface temperature of urban forests[J]. Environmental Pollution, 2016, 216:519-529.
doi: 10.1016/j.envpol.2016.06.004 url:
[10] 杨一鹏, 曹广真, 侯鹏, 等. 城市湿地气候调节功能遥感监测评估[J]. 地理研究, 2013, 32(1):73-80.
[10] Yang Y P, Cao G Z, Hou P, et al. Monitoring and evaluation for climate regulation service of urban wetlands with remote sensing[J]. Geographical Research, 2013, 32(1):73-80.
[11] 陈旭, 李霖, 王江, 等. 城市绿地对热岛效应的缓解作用研究——以台州市为例[J]. 生态环境学报, 2015, 24(4):643-649.
[11] Chen X, Li L, Wang J, et al. Heat island effect mitigation by urban green space system:A case study of Taizhou City[J]. Ecology and Environmental Sciences, 2015, 24(4):643-649.
[12] 王晓俊, 卫笑, 邹昊. 城市绿地空间格局对热岛效应的影响研究进展[J]. 生态环境学报, 2020, 29(9):1904-1911.
[12] Wang X J, Wei X, Zou H. Research progress about the impact of urban green space spatial pattern on urban heat island[J]. Ecology and Environmental Sciences, 2000, 29(9): 1904-1911.
[13] Ji Q, Yu M. Studying dynamical monitoring of heat island effect based on MODIS data in coastal cities of southeast Fujian Province[C]. Urban Remote Sensing Joint Event. Shanghai: IEEE, 2009.
[14] Zhang J H, Yao F M. The characteristics of urban heat island variation in Beijing urban area and its impact factors[C]. Urban Remote Sensing Joint Event. Shanghai: IEEE, 2009.
[15] Zhang X P, Wang D X, Hao H K, et al. Effects of land use/cover changes and urban forest configuration on urban heat islands in a loess hilly region:Case study based on Yan’an City,China[J]. International Journal of Environmental Research and Public Health, 2017, 14(8):840.
doi: 10.3390/ijerph14080840 url:
[16] Li B Y, Wang W, Bai L, et al. Effects of spatio-temporal landscape patterns on land surface temperature:A case study of Xi’an City,China[J]. Environmental Monit Assess, 2018, 190:419.
doi: 10.1007/s10661-018-6787-z url:
[17] Liu K, Su H B, Li X K, et al. Quantifying spatial-temporal pattern of urban heat island in Beijing:An improved assessment using land surface temperature (LST) time series observations from Landsat,MODIS,and Chinese new satellite GaoFen-1[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015:1939-1404.
[18] Du H Y, Cai W B, Xu Y Q, et al. Quantifying the cool island effects of urban green spaces using remote sensing data[J]. Urban Forestry & Urban Greening, 2017, 27:24-31.
[19] Ngulani T, Shackleton C M. The degree,extent and value of air temperature amelioration by urban green spaces in Bulawayo,Zimbabwe[J]. The South African Geographical Journal, 2019, 102(3):344-355.
doi: 10.1080/03736245.2019.1685405 url:
[20] Estoque R C, Murayama Y, Myint S W. Effects of landscape composition and pattern on land surface temperature:An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2016, 577:349-359.
doi: 10.1016/j.scitotenv.2016.10.195 url:
[21] Li X M, Zhou W Q. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects:Extending understanding from local to the city scale[J]. Urban Forestry & Urban Greening, 2019, 41:255-263.
[22] 张硕, 刘勇洪, 黄宏涛. 珠三角城市群热岛时空分布及定量评估研究[J]. 生态环境学报, 2017, 26(7):1157-1166.
[22] Zhang S, Liu Y H, Huang H T. Research on quantitative evaluations and spatial and temporal distribution of heat islands for the Pearl River Delta agglomeration[J]. Ecology and Environmental Sciences, 2017, 26(7): 1157-1166.
[23] 陈燕红, 蔡芫镔, 仝川. 基于遥感的城市绿色空间演化过程的温度效应研究——以福州主城区为例[J]. 生态学报, 2020, 40(7):2439-2449.
[23] Chen Y H, Cai Y B, Tong C. Temperature effect under the green space evolution based on remote sensing:A case study of Fuzhou,China[J]. Acta Ecologica Sinica, 2020, 40(7):2439-2449.
[24] 唐山市人民政府. 唐山统计年鉴[M]. 北京: 中国统计出版社, 2019.
[24] Tangshan Municipal People’s Government. Tangshan statistical yearbook[M]. Beijing: China Statistics Press, 2019.
[25] 张学儒, 陈春, 董坤. 基于RS与GIS唐山海岸带地区近50年土地利用格局时空特征分析[J]. 西北农业学报, 2013, 22(2):204-208.
[25] Zhang X R, Chen C, Dong K. Analysis of temporal and spatial characteristics of land use pattern in Tangshan coastal zone from 1956 to 2005 based on RS and GIS[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(2):204-208.
[26] 金点点, 宫兆宁. 基于Landsat系列数据地表温度反演算法对比分析——以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5):830-841.
[26] Jin D D, Gong Z N. Algorithms comparison of land surface temperature retrieval from Landsat series data:A case study in Qiqihar,China[J]. Remote Sensing Technology and Application, 2018, 33(5): 830-841.
[27] 覃志豪, 张明华, Arnon Karnieli, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4):456-466.
doi: 10.11821/xb200104009
[27] Qin Z H, Zhang M H, Arnon Karnieli, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001, 56(4):456-466.
doi: 10.11821/xb200104009
[28] Jiménez‐Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research, 2003, 108(D22):2015-2023.
[29] 毛克彪, 唐华俊, 周清波, 等. 用辐射传输方程从MODIS数据中反演地表温度的方法[J]. 兰州大学学报(自然科学版), 2007, 43(4):12-17.
[29] Mao K B, Tang H J, Zhou Q B, et al. Retrieving land surface temperature from MODIS data by using radiance transfer equation[J]. Journal of Lanzhou University(Natural Sciences), 2007, 43(4):12-17.
[30] Rozenstein O, Qin Z H, Derimian Y, et al. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm[J]. Sensors, 2014, 14(4):5768-5780.
doi: 10.3390/s140405768 pmid: 24670716
[31] 覃志豪, 李文娟, 徐斌, 等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感, 2004, 61(3):28-30.doi: 10.6046/gtzyyg.2004.03.07.
doi: 10.6046/gtzyyg.2004.03.07
[31] Qin Z H, Li W J, Xu B, et al. The estimation of land surface emissivity for Landsat TM6[J]. Remote Sensing for Land and Resources, 2004, 61(3):28-30.doi: 10.6046/gtzyyg.2004.03.07.
doi: 10.6046/gtzyyg.2004.03.07
[32] 宋挺, 段峥, 刘军志, 等. Landsat8数据地表温度反演算法对比[J]. 遥感学报, 2015, 19(3):451-464.
[32] Song T, Duan Z, Liu J Z, et al. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite[J]. Journal of Remote Sensing, 2015, 19(3):451-464.
[33] Peng J, Xie P, Liu Y X, et al. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016, 173:145-155.
doi: 10.1016/j.rse.2015.11.027 url:
[34] 孟伟庆, 李洪远, 朱琳, 等. 城市绿化的发展思路—绿色空间建设[J]. 城市环境与城市生态, 2005, 18(2):8-10.
[34] Meng W Q, Li H Y, Zhu L, et al. Ideas on urban greening-green space construction[J]. Urban Environment & Urban Ecology, 2005, 18(2):8-10.
[35] 李锋, 王如松, Juergen Paulussen. 北京市绿色空间生态概念规划研究[J]. 城市规划学刊, 2004(4):61-64.
[35] Li F, Wang R S, Juergen Paulussen. Study on ecological concept planning of green space in Beijing[J]. Urban Planning Forum, 2004(4):61-64.
[1] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[2] LI Na, GAN Fuping, DONG Xinfeng, LI Juan, ZHANG Shifan, LI Tongtong. Investigation and applications of rocky desertification based on GF-5 hyperspectral data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 230-235.
[3] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[4] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[5] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[6] QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
[7] DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34(3): 112-120.
[8] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[9] WANG Meiya, XU Hanqiu. A comparative study on the changes in heat island effect in Chinese and foreign megacities[J]. Remote Sensing for Natural Resources, 2021, 33(4): 200-208.
[10] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[11] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[12] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[13] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[14] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[15] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech