Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 105-112     DOI: 10.6046/zrzyyg.2021351
|
Change detection of satellite time series images based on spatial-temporal-spectral features
QIN Le1(), HE Peng2, MA Yuzhong3, LIU Jianqiang4, YANG Bin1()
1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
2. School of Mechanical Engineering, University of South China, Hengyang 421000, China
3. Shandong Provincial Institute of Land Surveying and Mapping, Jinan 250014, China
4. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China
Download: PDF(5751 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Compared with common dual-temporal satellite images, satellite time series images contain richer surface information and can alleviate the impact of foreign objects with the same spectrum and the same object with different spectra. Therefore, they play an important role in change detection. However, the change detection methods for satellite time series images are mostly based on pixels and ignore the spatial relationship between pixels and their surroundings. This causes noise in the change detection result. Accordingly, this study proposed a method of change detection based on spatial-temporal-spectral features(CDSTS) for satellite time series images. First, the temporal, spatial (textural and statistical), and spectral features of each pixel were extracted from Landsat time series images using a gray-level co-occurrence matrix and local statistical calculation methods. Then, anomalies of time series features were automatically screened according to the time series performance regularity of each pixel in different bands. These anomalies were then fused with the detection results of the continuous change detection and classification method (CCDC) to obtain high-precision changed/unchanged training sample points. Finally, the SVM classifier was trained using the training sample points and their corresponding spatial-temporal-spectral features for full graph classification. The results show that the CDSTS algorithm significantly outperforms the commonly used time series change detection algorithms CCDC and COLD (continuous monitoring of land disturbance) in terms of change detection precision, with the overall precision improved by 4.8 to 11.7 percentage points.

Keywords Landsat      time series      change detection      textural feature     
ZTFLH:  TP79  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Le QIN
Peng HE
Yuzhong MA
Jianqiang LIU
Bin YANG
Cite this article:   
Le QIN,Peng HE,Yuzhong MA, et al. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021351     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/105
Fig.1  Number of used images for each study area in each year
Fig.2  Workflow of the CDSTS
Fig.3  Normalized spectral, textural and statistical features for a sample pixel
区域 2013年影像 2020年影像 CCDC结果 COLD结果 CDSTS结果
CD
YY
FQ
XA
FCG
Tab.1  Change detection results for different approaches
区域 2013年影像 2020年影像 CCDC结果 COLD结果 CDSTS结果
CD
YY
FQ
XA
FCG
Tab.2  Comparison of the change detection results of different methods in details
场景 评价指标 CCDC COLD CDSTS
未变化 变化 未变化 变化 未变化 变化
CD precision 84.73 92.44 82.46 93.02 97.12 94.55
recall 93.20 83.20 94.00 80.00 94.40 97.20
F1 88.76 87.58 87.85 86.02 95.74 95.86
OA 88.20 87.00 95.80
YY precision 80.95 84.21 77.30 88.43 92.51 94.86
recall 85.00 80.00 90.38 73.46 95.00 92.31
F1 82.93 82.05 83.33 80.25 93.74 93.57
OA 82.50 81.92 93.65
FQ precision 94.66 79.30 90.39 81.79 92.68 88.32
recall 75.00 95.77 79.62 91.54 87.69 93.08
F1 83.69 86.76 84.66 86.39 90.12 90.64
OA 85.38 85.58 90.38
XA precision 82.45 78.91 76.27 84.44 84.28 96.38
recall 77.69 83.46 86.54 73.08 96.92 81.92
F1 80.00 81.12 81.08 78.35 90.16 88.57
OA 80.58 79.81 89.42
FCG precision 88.65 78.46 94.94 85.15 97.61 91.35
recall 75.19 90.37 83.33 95.56 90.74 97.78
F1 81.36 83.99 88.76 90.05 94.05 94.45
OA 82.78 89.44 94.26
Tab.3  Accuracy assessment using different methods(%)
Fig.4  Overall accuracy of change detection using different thresholds
[1] Singh A. Review article digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6):989-1003.
doi: 10.1080/01431168908903939 url: https://www.tandfonline.com/doi/full/10.1080/01431168908903939
[2] Silveira E M O, Bueno I T, Acerbi-Junior F W, et al. Using spatial features to reduce the impact of seasonality for detecting tropical forest changes from Landsat time series[J]. Remote Sensing, 2018, 10(6):808.
doi: 10.3390/rs10060808 url: http://www.mdpi.com/2072-4292/10/6/808
[3] Gómez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:55-72.
doi: 10.1016/j.isprsjprs.2016.03.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271616000769
[4] Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images:From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80:91-106.
doi: 10.1016/j.isprsjprs.2013.03.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271613000804
[5] Roy D P, Wulder M A, Loveland T R, et al. Landsat8:Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145:154-172.
doi: 10.1016/j.rse.2014.02.001 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571400042X
[6] Zhu Z, Woodcock C E, Holden C, et al. Generating synthetic Landsat images based on all available Landsat data:Predicting Landsat surface reflectance at any given time[J]. Remote Sensing of Environment, 2015, 162:67-83.
doi: 10.1016/j.rse.2015.02.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715000590
[7] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459.
[7] Zhang L P, Wu C. The status quo and prospects of multi-temporal remote sensing image change detection[J]. Journal of Surveying and Mapping, 2017, 46(10):1447-1459.
[8] 王志有, 李欢, 刘自增, 等. 基于深度学习算法的卫星影像变化监测[J]. 计算机系统应用, 2020, 29(1):40-48.
[8] Wang Z Y, Li H, Liu Z Z, et al. Satellite image change monitoring based on deep learning algorithm[J]. Computer System Applications, 2020, 29(1):40-48.
[9] Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776.
doi: 10.1109/LGRS.2009.2025059 url: http://ieeexplore.ieee.org/document/5196726/
[10] Tewkesbury A P, Comber A J, Tate N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
doi: 10.1016/j.rse.2015.01.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715000152
[11] Gong M G, Zhan T, Zhang P Z, et al. Superpixel-based difference representation learning for change detection in multispectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote sensing, 2017, 55(5):2658-2673.
doi: 10.1109/TGRS.2017.2650198 url: http://ieeexplore.ieee.org/document/7839934/
[12] Zhang P Z, Gong M G, Su L Z, et al. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:24-41.
doi: 10.1016/j.isprsjprs.2016.02.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271616000563
[13] Woodcock C E, Loveland T R, Herold M, et al. Transitioning from change detection to monitoring with remote sensing:A paradigm shift[J]. Remote Sensing of Environment, 2020, 238:111558.
doi: 10.1016/j.rse.2019.111558 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719305784
[14] Hamunyela E, Brandt P, Shirima D, et al. Space-time detection of deforestation,forest degradation and regeneration in montane forests of eastern Tanzania[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102063.
doi: 10.1016/j.jag.2020.102063 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243419310529
[15] Liu C, Zhang Q, Luo H, et al. An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks[J]. Remote Sensing of Environment, 2019, 229:114-132.
doi: 10.1016/j.rse.2019.04.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719301762
[16] Wang Z H, Yao W Y, Tang Q H, et al. Continuous change detection of forest/grassland and cropland in the Loess Plateau of China using all available Landsat data[J]. Remote Sensing, 2018, 10(11):1775.
doi: 10.3390/rs10111775 url: http://www.mdpi.com/2072-4292/10/11/1775
[17] Xiao P F, Zhang X L, Wang D G, et al. Change detection of built-up land:A framework of combining pixel-based detection and object-based recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:402-414.
doi: 10.1016/j.isprsjprs.2016.07.003 url: https://linkinghub.elsevier.com/retrieve/pii/S092427161630168X
[18] 杜培军, 柳思聪. 融合多特征的遥感影像变化检测[J]. 遥感学报, 2012, 16(4):663-677.
[18] Du P J, Liu S C. Remote sensing image change detection based on multi-feature fusion[J]. Journal of Remote Sensing, 2012, 16(4):663-677.
[19] Zhu Z. Change detection using landsat time series:A review offrequencies,preprocessing,algorithms,and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:370-384.
doi: 10.1016/j.isprsjprs.2017.06.013 url: https://linkinghub.elsevier.com/retrieve/pii/S092427161730103X
[20] Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12):2897-2910.
doi: 10.1016/j.rse.2010.07.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710002245
[21] Huang C, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010, 114(1):183-198.
doi: 10.1016/j.rse.2009.08.017 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709002685
[22] Verbesselt J, Zeileis A, Herold M. Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012, 123:98-108.
doi: 10.1016/j.rse.2012.02.022 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712001150
[23] Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2013, 144(1):152-171.
doi: 10.1016/j.rse.2014.01.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714000248
[24] Zhu Z, Zhang J, Yang Z, et al. Continuous monitoring of land disturbance based on Landsat time series[J]. Remote Sensing of Environment, 2020, 238:111116.
doi: 10.1016/j.rse.2019.03.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719301002
[25] Zhang H, Gong M G, Zhang P Z, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1666-1670.
doi: 10.1109/LGRS.2016.2601930 url: http://ieeexplore.ieee.org/document/7559716/
[26] Chen G, Hay G J, Carvalho L M T, et al. Object-based change detection[J]. International Journal of Remote Sensing, 2012, 33(14):4434-4457.
doi: 10.1080/01431161.2011.648285 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2011.648285
[1] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[2] LI Na, GAN Fuping, DONG Xinfeng, LI Juan, ZHANG Shifan, LI Tongtong. Investigation and applications of rocky desertification based on GF-5 hyperspectral data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 230-235.
[3] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[4] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[5] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[6] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[7] YU Wen, GONG Huili, CHEN Beibei, ZHOU Chaofan. Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing[J]. Remote Sensing for Natural Resources, 2022, 34(4): 183-193.
[8] DONG Jihong, MA Zhigang, LIANG Jingtao, LIU Bin, ZHAO Cong, ZENG Shuai, YAN Shengwu, MA Xiaobo. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources, 2022, 34(3): 73-81.
[9] DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34(3): 112-120.
[10] ZENG Hui, REN Huazhong, ZHU Jinshun, GUO Jinxin, YE Xin, TENG Yuanjian, NIE Jing, QIN Qiming. Impacts of the Syrian Civil War on vegetation[J]. Remote Sensing for Natural Resources, 2022, 34(3): 121-128.
[11] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[12] LUO Hongjian, MING Dongping, XU Lu. Time series calculation of remote sensing ecological index based on GEE[J]. Remote Sensing for Natural Resources, 2022, 34(2): 271-277.
[13] WANG Siyao, ZHAO Chunlei, CHEN Xia, LIU Dan. Remote sensing-based green space evolution in Tangshan and its influence on heat island effect[J]. Remote Sensing for Natural Resources, 2022, 34(2): 168-175.
[14] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[15] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech