Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 10-18     DOI: 10.6046/zrzyyg.2020416
|
Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing
AI Lu(), SUN Shuyi, LI Shuguang(), MA Hongzhang
College of Science, China University of Petroleum, Qingdao 266580, China
Download: PDF(879 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Soil moisture (SM) plays an irreplaceable role in agricultural production, and agricultural water use, yield estimation, and drought monitoring are all closely related to SM. Therefore, it is of great significance to monitor the changes in SM. At present, the remote sensing technique is an effective tool for the monitoring of the changes in SM in large areas. Optical remote sensing is sensitive to the composition of surface vegetation, while microwaves can penetrate vegetation to obtain the information of SM under vegetation. Meanwhile, the sensitivity of synthetic aperture Radar (SAR) backscattering to the changes in SM is greatly affected by the vegetation canopy. In areas covered by vegetation, microwave remote sensing will be affected by both surface roughness and vegetation. Therefore, the joint application of optical and SAR remote sensing can well remove the impacts of vegetation and surface roughness, thus improving the inversion accuracy of SM. This paper summarizes the remote sensing models and retrieval methods commonly used in the research on the cooperative inversion of SM using optical and SAR remote sensing. Meanwhile, it proposes the difficulties in the research and the future development of the cooperative inversion.

Keywords soil moisture      optical remote sensing      SAR      vegetation canopy      roughness      scattering model     
ZTFLH:  TP79  
Corresponding Authors: LI Shuguang     E-mail: 873176610@qq.com;lshguang@upc.edu.cn
Issue Date: 23 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu AI
Shuyi SUN
Shuguang LI
Hongzhang MA
Cite this article:   
Lu AI,Shuyi SUN,Shuguang LI, et al. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020416     OR     https://www.gtzyyg.com/EN/Y2021/V33/I4/10
Fig.1  Roadmap for soil moisture retrieval technology
[1] 周鹏, 丁建丽, 王飞, 等. 植被覆盖地表土壤水分遥感反演[J]. 遥感学报, 2010,14(5):959-973.
[1] Zhou P, Ding J L, Wang F, et al. Retrieval methods of soil water content in vegetation covering areas based on multi-source remote sensing data[J]. Journal of Remote Sensing, 2010,14(5):959-973.
[2] Hajj M E, Baghdadi N, Zribi M, et al. Soil moisture retrieval over irrigated grassland using X-band SAR data[J]. Remote Sensing of Environment, 2016,176:202-218.
doi: 10.1016/j.rse.2016.01.027 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716300281
[3] Jackson T J, Le Vine D M, Hsu A Y, et al. Soil moisture mapping at regional scales using microwave radiometry:The southern great plains hydrology experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(5):2136-2151.
doi: 10.1109/36.789610 url: http://ieeexplore.ieee.org/document/789610/
[4] Narayanan R M, Hegde M S. Soil moisture estimation using combined multifrequency SAR data:A comparison between two inversion models using simulation[J]. Geocarto International, 2000,15(3):65-76.
doi: 10.1080/10106040008542165 url: http://www.tandfonline.com/doi/abs/10.1080/10106040008542165
[5] Zhao T, Hu L, Shi J, et al. Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations[J]. Remote Sensing of Environment, 2020,248:111958.
doi: 10.1016/j.rse.2020.111958 url: https://linkinghub.elsevier.com/retrieve/pii/S003442572030328X
[6] De Roo R D, Du Y, Ulaby F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(4):864-872.
doi: 10.1109/36.917912 url: http://ieeexplore.ieee.org/document/917912/
[7] Verhoest N E C, Lievens H, Wagner W, et al. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture Radar[J]. Sensors, 2008,8(7):4213-4248.
pmid: 27879932
[8] Marzahn P, Ludwig R. On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modeling[J]. Hydrology and Earth System Sciences, 2009,13(3):381-394.
doi: 10.5194/hess-13-381-2009 url: https://hess.copernicus.org/articles/13/381/2009/
[9] 赵凯, 黄资彧. 基于改进热惯量模型的表层土壤水反演研究[J]. 测绘与空间地理信息, 2017,40(5):41-43.
[9] Zhao K, Huang Z Y. The study of soil moisture retrieval based on improved thermal inertia model[J]. Geomatics and Spatial Information Technology, 2017,40(5):41-43.
[10] 余凡, 赵英时. ASAR和TM数据协同反演植被覆盖地表土壤水分的新方法[J]. 中国科学(地球科学), 2011,41(4):532-540.
[10] Yu F, Zhao Y S. A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas[J]. Science China Earth Sciences, 2011,41(4):532-540.
[11] 孔金玲, 李菁菁, 甄珮珮, 等. 微波与光学遥感协同反演旱区地表土壤水分研究[J]. 地球信息科学学报, 2016,18(6):857-863.
doi: 10.3724/SP.J.1047.2016.00857
[11] Kong J L, Li J J, Zhen P P, et al. Inversion of soil moisture in arid area based on microwave and optical remote sensing data[J]. Journal of Geo-Information Science, 2016,18(6):857-863.
[12] 李奎, 张瑞, 段金亮, 等. 利用SAR影像与多光谱数据反演广域土壤湿度[J]. 农业工程学报, 2020,36(7):134-140.
[12] Li K, Zhang R, Duan J L, et al. Wide-area soil moisture retrieval using SAR images and multispectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020,36(7):134-140.
[13] 马红章, 张临晶, 孙林, 等. 光学与微波数据协同反演农田区土壤水分[J]. 遥感学报, 2014,18(3):673-685.
[13] Ma H Z, Zhang L J, Sun L, et al. Farmland soil moisture inversion by synergizing optical and microwave remote sensing data[J]. Journal of Remote Sensing, 2014,18(3):673-685.
[14] Paloscia S, Pettinato S, Santi E, et al. Soil moisture mapping using Sentinel-1 images:Algorithm and preliminary validation[J]. Remote Sensing of Environment, 2013,134:234-248.
doi: 10.1016/j.rse.2013.02.027 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571300076X
[15] Huang S, Ding J, Liu B, et al. The capability of integrating optical and microwave data for detecting soil moisture in an oasis region[J]. Remote Sensing, 2020,12(9):1358.
doi: 10.3390/rs12091358 url: https://www.mdpi.com/2072-4292/12/9/1358
[16] 何连, 秦其明, 任华忠, 等. 利用多时相Sentinel-1 SAR数据反演农田地表土壤水分[J]. 农业工程学报, 2016,32(3):142-148.
[16] He L, Qin Q M, Ren H Z, et al. Soil moisture retrieval using multi-temporal Sentinel-1 SAR data in agricultural areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(3):142-148.
[17] 刘正春, 冯美臣, 徐立帅, 等. 基于Sentinel多源数据的晋南农田地表土壤水分反演[J]. 中国农学通报, 2020,36(20):51-58.
[17] Liu Z C, Feng M C, Xu L S, et al. Soil moisture retrieval of farmland in southern Shanxi:Based on Sentinel multi-source data[J]. Chinese Agricultural Science Bulletin, 2020,36(20):51-58.
[18] 张滢, 丁建丽, 周鹏. 干旱区土壤水分微波遥感反演算法综述[J]. 干旱区地理, 2011,34(4):671-678.
[18] Zhang Y, Ding J L, Zhou P. Model algorithm of soil moisture retrieval base on microwave remote sensing in arid regions[J]. Arid Land Geography, 2011,34(4):671-678.
[19] 王树果, 李新, 韩旭军, 等. 利用多时相ASAR数据反演黑河流域中游地表土壤水分[J]. 遥感技术与应用, 2009,24(5):582-587,552.
[19] Wang S G, Li X, Han X J, et al. Derivation of surface soil moisture in the middle stream of Heihe River Basin using multi-temporal ASAR images[J]. Remote Sensing Technology and Application, 2009,24(5):582-587,552.
[20] 梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020,24(6):618-671.
[20] Liang S L, Bai R, Chen X N, et al. Review of China's land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020,24(6):618-671.
[21] Karthikeyan L, Pan M, Konings A G, et al. Simultaneous retrieval of global scale vegetation optical depth,surface roughness,and soil moisture using X-band AMSR-E observations[J]. Remote Sensing of Environment, 2019,234:111473.
doi: 10.1016/j.rse.2019.111473 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719304924
[22] Notarnicola C. A bayesian change detection approach for retrieval of soil moisture variations under different roughness conditions[J]. IEEE Geoscience and Remote Sensing Letters, 2013,11(2):414-418.
doi: 10.1109/LGRS.8859 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
[23] Zeng J, Chen K S, Bi H, et al. A comprehensive analysis of rough soil surface scattering and emission predicted by AIEM with comparison to numerical simulations and experimental measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(6):1696-1708.
doi: 10.1109/TGRS.2016.2629759 url: http://ieeexplore.ieee.org/document/7792655/
[24] Wu T D, Chen K S, Shi J, et al. A transition model for the reflection coefficient in surface scattering[J]. IEEE Transactions on Geo-science and Remote Sensing, 2001,39(9):2040-2050.
doi: 10.1109/36.951094 url: http://ieeexplore.ieee.org/document/951094/
[25] Chen K S, Wu T D, Tsang L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(1):90-101.
doi: 10.1109/TGRS.2002.807587 url: http://ieeexplore.ieee.org/document/1183697/
[26] Wu T D, Chen K S. A reappraisal of the validity of the IEM model for backscattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(4):743-753.
doi: 10.1109/TGRS.2003.815405 url: http://ieeexplore.ieee.org/document/1288369/
[27] Yang Y, Chen K S, Tsang L, et al. Depolarized backscattering of rough surface by AIEM model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(11):4740-4752.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[28] Shi J, Chen K S, Li Q, et al. A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(12):2674-2686.
doi: 10.1109/TGRS.2002.807003 url: http://ieeexplore.ieee.org/document/1176158/
[29] Dubois P C, Van Zyl J, Engman T. Measuring soil moisture with imaging Radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(4):915-926.
doi: 10.1109/36.406677 url: http://ieeexplore.ieee.org/document/406677/
[30] Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for Radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992,30(2):370-381.
doi: 10.1109/36.134086 url: http://ieeexplore.ieee.org/document/134086/
[31] Wigneron J-P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(8):1697-1707.
doi: 10.1109/36.942548 url: http://ieeexplore.ieee.org/document/942548/
[32] Allen W A, Gausman H W, Richardson A J, et al. Interaction of isotropic light with a compact plant leaf[J]. Josa, 1969,59(10):1376-1379.
doi: 10.1364/JOSA.59.001376 url: https://www.osapublishing.org/abstract.cfm?URI=josa-59-10-1376
[33] Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling:The SAIL model[J]. Remote Sensing of Environment, 1984,16(2):125-141.
doi: 10.1016/0034-4257(84)90057-9 url: https://linkinghub.elsevier.com/retrieve/pii/0034425784900579
[34] Suits G H. The calculation of the directional reflectance of a vegetative canopy[J]. Remote Sensing of Environment, 1971,2:117-125.
doi: 10.1016/0034-4257(71)90085-X url: https://linkinghub.elsevier.com/retrieve/pii/003442577190085X
[35] Jacquemoud S. Inversion of the PROSPECT+ SAIL canopy reflectance model from AVIRIS equivalent spectra:Theoretical study[J]. Remote Sensing of Environment, 1993,44(2-3):281-292.
doi: 10.1016/0034-4257(93)90022-P url: https://linkinghub.elsevier.com/retrieve/pii/003442579390022P
[36] Ulaby F T, Allen C T, Eger Iii G, et al. Relating the microwave backscattering coefficient to leaf area index[J]. Remote Sensing of Environment, 1984,14(1-3):113-133.
doi: 10.1016/0034-4257(84)90010-5 url: https://linkinghub.elsevier.com/retrieve/pii/0034425784900105
[37] Lievens H, Verhoest N E. On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling,the IEM,and effective roughness parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(4):740-744.
doi: 10.1109/LGRS.2011.2106109 url: http://ieeexplore.ieee.org/document/5721785/
[38] Kweon S K, Oh Y. A modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(5):2802-2809.
doi: 10.1109/TGRS.2014.2364914 url: http://ieeexplore.ieee.org/document/6955776/
[39] Joseph A T, Van der Velde R, O'Neill P E, et al. Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) Radar observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(8):2365-2374.
doi: 10.1109/TGRS.2008.917214 url: http://ieeexplore.ieee.org/document/4578823/
[40] Joseph A T, Van der Velde R, O'Neill P E, et al. Effects of corn on C- and L-band Radar backscatter:A correction method for soil moisture retrieval[J]. Remote Sensing of Environment, 2011,114(11):2417-2430.
doi: 10.1016/j.rse.2010.05.017 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710001641
[41] Prakash R, Singh D, Pathak N P. A fusion approach to retrieve soil moisture with SAR and optical data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(1):196-206.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[42] Bai X, He B. Potential of Dubois model for soil moisture retrieval in prairie areas using SAR and optical data[J]. International Journal of Remote Sensing, 2015,36(21-22):5737-5753.
doi: 10.1080/01431161.2015.1103920 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2015.1103920
[43] Ulaby F T, Sarabandi K, Mcdonald K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990,11(7):1223-1253.
doi: 10.1080/01431169008955090 url: https://www.tandfonline.com/doi/full/10.1080/01431169008955090
[44] 杜鹤娟, 柳钦火, 李静, 等. 光学与微波植被指数协同反演农作物叶面积指数的可行性分析[J]. 遥感学报, 2013,17(6):1587-1611.
[44] Du H J, Liu Q H, Li J, et al. Retrieving crop leaf area index by combining optical and microwave vegetation indices:A feasibility analysis[J]. Journal of Remote Sensing, 2013,17(6):1587-1611.
[45] 马腾, 韩玲, 刘全明. 考虑地表粗糙度改进水云模型反演西班牙农田地表土壤含水率[J]. 农业工程学报, 2019,35(24):129-135.
[45] Ma T, Han L, Liu Q M. Inversion of surface soil moisture content of Spanish farmland using modified water cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(24):129-135.
[46] Han L, Chen L W, Zhang Y C, et al. A method of microwave soil moisture inversion without dependence on the field measurement data[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2018,XLII-3:459-465.
doi: 10.5194/isprs-archives-XLII-3-459-2018 url: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3/459/2018/
[47] 韩玲, 张延成. 光学与微波数据协同反演植被覆盖区土壤水分[J]. 水资源与水工程学报, 2018,29(4):230-235.
[47] Han L, Zhang Y C. Synergistic inversion of soil moisture in vegetation-covered area based on optical and microwave data[J]. Journal of Water Resources and Water Engineering, 2018,29(4):230-235.
[48] Yadav V P, Prasad R, Bala R, et al. An improved inversion algorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using C- band Sentinel-1A SAR data[J]. Computers and Electronics in Agriculture, 2020,173:105447.
doi: 10.1016/j.compag.2020.105447 url: https://linkinghub.elsevier.com/retrieve/pii/S0168169919326481
[49] Park S E, Jung Y T, Cho J H, et al. Theoretical evaluation of water cloud model vegetation parameters[J]. Remote Sensing, 2019,11(8):894.
doi: 10.3390/rs11080894 url: https://www.mdpi.com/2072-4292/11/8/894
[50] Wang L, He B, Bai X, et al. Assessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data[J]. Photogrammetric Engineering and Remote Sensing, 2019,85(1):43-54.
doi: 10.14358/PERS.85.1.43 url: https://www.ingentaconnect.com/content/10.14358/PERS.85.1.43
[51] Mattar C, Wigneron J P, Sobrino J A, et al. A combined optical-microwave method to retrieve soil moisture over vegetated areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(5):1404-1413.
doi: 10.1109/TGRS.2011.2179051 url: http://ieeexplore.ieee.org/document/6132464/
[52] 鲍艳松, 刘良云, 王纪华. 综合利用光学、微波遥感数据反演土壤湿度研究[J]. 北京师范大学学报(自然科学版), 2007,43(3):228-233.
[52] Bao Y S, Liu L Y, Wang J H. Soil moisture estimation based on optical and microwave remote sensing data[J]. Journal of Beijing Normal University (Natural Science), 2007,43(3):228-233.
[53] 雷志斌, 孟庆岩, 田淑芳, 等. 基于GF-3和Landsat8遥感数据的土壤水分反演研究[J]. 地球信息科学学报, 2019,21(12):1965-1976.
doi: 10.12082/dqxxkx.2019.190115
[53] Lei Z B, Meng Q Y, Tian S F, et al. Soil moisture retrieval study based on GF-3 and Landsat8 remote sensing data[J]. Journal of Geo-Information Science, 2019,21(12):1965-1976.
[54] Zribi M, Dechambre M. A new empirical model to retrieve soil moisture and roughness from C-band Radar data[J]. Remote Sensing of Environment, 2003,84(1):42-52.
doi: 10.1016/S0034-4257(02)00069-X url: https://linkinghub.elsevier.com/retrieve/pii/S003442570200069X
[55] Rahman M M, Moran M S, Thoma D P, et al. A derivation of roughness correlation length for parameterizing Radar backscatter models[J]. International Journal of Remote Sensing, 2007,28(18):3995-4012.
doi: 10.1080/01431160601075533 url: https://www.tandfonline.com/doi/full/10.1080/01431160601075533
[56] Zhu L, Walker J P, Ye N, et al. Roughness and vegetation change detection:A pre-processing for soil moisture retrieval from multi-temporal SAR imagery[J]. Remote Sensing of Environment, 2019,225:93-106.
doi: 10.1016/j.rse.2019.02.027 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719300823
[57] Santi E, Dabboor M, Pettinato S, et al. Combining machine learning and compact polarimetry for estimating soil moisture from C-band SAR data[J]. Remote Sensing, 2019,11(20):2451.
doi: 10.3390/rs11202451 url: https://www.mdpi.com/2072-4292/11/20/2451
[58] 余凡, 赵英时, 李海涛. 基于遗传BP神经网络的主被动遥感协同反演土壤水分[J]. 红外与毫米波学报, 2012,31(3):283-288.
[58] Yu F, Zhao Y S, Li H T. Soil moisture retrieval based on GA-BP neural networks algorithm[J]. Journal of Infrared and Millimeter Waves, 2012,31(3):283-288.
doi: 10.3724/SP.J.1010.2012.00283 url: http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1010.2012.00283
[59] Santi E. Neural networks applications for the remote sensing of hydrological parameters[M]//Artificial Neural Networks—Models and Applications Book.TechOpen, 2016:309-334.
[60] 姜红, 玉素甫江·如素力, 拜合提尼沙·阿不都克日木, 等. 基于支持向量机回归算法的土壤水分光学与微波遥感协同反演[J]. 地理与地理信息科学, 2017,33(6):30-36.
[60] Jiang H, Yusufujiang R, Baihetinisha A, et al. Soil moisture retrieval by synergizing optical and microwave remote sensing data based on support vector machine regression algorithm[J]. Journal of Geo-Information Science, 2017,33(6):30-36.
[61] Ma H, Liu S. The potential evaluation of multisource remote sensing data for extracting soil moisture based on the method of BP neural network[J]. Canadian Journal of Remote Sensing, 2016,42(2):117-124.
doi: 10.1080/07038992.2016.1160773 url: http://www.tandfonline.com/doi/full/10.1080/07038992.2016.1160773
[62] Getachew A, Tsegaye T, Berhan G, et al. Combined use of Sentinel-1 SAR and Landsat sensors products for residual soil moisture retrieval over agricultural fields in the upper Blue Nile Basin,Ethiopia[J]. Sensors, 2020,20(11):3282.
doi: 10.3390/s20113282 url: https://www.mdpi.com/1424-8220/20/11/3282
[63] Notarnicola C, Angiulli M, Posa F. Soil moisture retrieval from remotely sensed data:Neural network approach Versus Bayesian method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(2):547-557.
doi: 10.1109/TGRS.2007.909951 url: http://ieeexplore.ieee.org/document/4407741/
[64] Kolassa J, Reichle R H, Liu Q, et al. Estimating surface soil moisture from SMAP observations using a neural network technique[J]. Remote Sensing of Environment, 2018,204:43-59.
doi: 10.1016/j.rse.2017.10.045 pmid: 29290638
[1] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[2] JIANG Decai, ZHENG Xiangxiang, WANG Ning, XIAO Chunlei, ZHU Zhenzhou. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3): 292-301.
[3] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[4] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[5] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[6] GUO Xiaomeng, FANG Xiuqin, YANG Lulu, CAO Yu. Artificial neural network-based estimation of root zone soil moisture in the western Liaohe river basin[J]. Remote Sensing for Natural Resources, 2023, 35(2): 193-201.
[7] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[8] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[9] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[10] ZHANG Tian, ZHOU Zhongfa, WANG Lingyu, ZHAO Xin, ZHANG Wenhui, ZHANG Shu, WANG Yu. A method for soil roughness measurement based on UAV point cloud data[J]. Remote Sensing for Natural Resources, 2023, 35(1): 115-122.
[11] HE Binfang, YAO Yun, FENG Yan, LIU Huimin, DAI Juan. Sentinel-1A based flood inundation monitoring in Anhui Province during the plum rain period of 2020[J]. Remote Sensing for Natural Resources, 2023, 35(1): 140-147.
[12] ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
[13] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[14] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[15] FU Yukai, YANG Shuwen, YAN Heng, XUE Qing, HONG Weili, SU Hang. An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence[J]. Remote Sensing for Natural Resources, 2023, 35(1): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech