Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (2) : 16-24     DOI: 10.6046/zrzyyg.2022143
|
River discharge estimation based on remote sensing
LI Hemou1,2,3(), BAI Juan3, GAN Fuping3(), LI Xianqing1,2, WANG Zekun1,2,3
1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology(Beijing), Beijing 100083, China
2. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(715 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Since the availability of global runoff data decrease year by year, the inversion algorithms, as substitutes for the river discharge measured at hydrological stations, have become increasingly important. With the continuous development of satellite remote sensing technology, the methods for estimating river discharge have increased in number. This study systematically summarized the remote sensing-based inversion methods for river discharge, as well as the inversion methods for hydraulic remote sensing elements that are closely related to the estimation of river discharge and the progress made in them. Moreover, this study reviewed the methods, principles, and application status of two types of algorithms based on hydrological models and empirical regression equations and summarized the applicable conditions and shortcomings of different methods. Finally, this study predicted the worldwide development trends of the river discharge inversion based on the satellite remote sensing technology, including ① actively developing the advanced data assimilation technology for satellite remote sensing data; ② integrating new sensor products; ③ optimizing and innovating algorithms.

Keywords river discharge      remote sensing      water level      river width      hydraulic characteristics     
ZTFLH:  TP79  
Issue Date: 07 July 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hemou LI
Juan BAI
Fuping GAN
Xianqing LI
Zekun WANG
Cite this article:   
Hemou LI,Juan BAI,Fuping GAN, et al. River discharge estimation based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 16-24.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022143     OR     https://www.gtzyyg.com/EN/Y2023/V35/I2/16
研究方法 研究人员及年份 使用数据/空间分辨
率/重返周期
研究流域 主要结论
基于水文模型 Getirana等[21]
(2013年)
ENVISAT/350 m/35 d 南美洲亚马孙河 在水文模型参数率定时采用雷达测高数据能得到模型合理参数
Liu等[22](2015年) Landsat/30 m/16 d
ENVISAT/350 m/35 d
北美红河 此方法能够估算大型无资料地区河流的流量
Sun等[23](2018年) QuickBird/0.6 m/4~6 d
IKONOS/0.58 m/3 d
WorldView-1/0.81 m/1.7 d
中国雅砻江 仅基于高精度遥感河宽数据校准的水文模型能够估算河道流量
基于经验回归方程 水位-流量经验曲线法 Kouraev等[27]
(2004年)
TOPEX-Poseidon/600 m/10 d 北极鄂毕河 卫星测高数据可以估算大型流域的部分河道流量演算
Birkinshaw等[30]
(2010年)
ERS-2/30 m/35 d
ENVISAT/350 m/35 d
亚洲湄公河 NSE介于0.823~0.935之间
Papa等[31]
(2012年)
Jason-2/12.5 m/10 d 亚洲恒河和雅鲁藏布江 平均误差为13%和6.5%
河宽-流量经验曲线法 Smith等[36](2008年) MODIS/250 m/8 d 俄罗斯勒拿河 在河流长度足够长时,可以将建立的河宽-流量关系曲线延用到河流其他位置
Pavelsky等[37]
(2014年)
RapidEye/5 m/1 d 北美塔纳诺河 相对误差为6.7%
Elmi等[38]
(2015年)
MODIS/250 m/8 d 非洲尼日尔河 改进河宽-流量经验曲线算法不需要流量数据与卫星图像同步观测
C/M信号法 Brakenridge等[39]
(2007年)
AMSR-E/25 km/16 d 全球57 条河流 基于被动微波遥感亮度温度的C/M信号法能够估算河流流量
Tarpanelli等[40]
(2013年)
MODIS/250 m/8 d 欧洲波河 基于光学遥感数据的C/M信号法可以估算中型流域流量
Li等[46](2019年) Landsat/30 m/16 d 中国黑河 基于C/M信号法发展出MPR法,能够估算小河流流量
AMHG法 Gleason等[48]
(2014年)
Landsat/30 m/16 d 全球34 条河流 相对均方根误差介于26%~41%之间
Rao等[49](2020年) ResourceSat/23 m/24 d
Landsat/30 m/16 d
印度4 条河流 NSE介于0.8~0.89之间
Mengen等[50]
(2020年)
Sentinel-1/10 m/6,12 d 亚洲湄公河 采用SAR卫星遥感数据,相对均方根误差为19.5%
多水力特征参数经验法 Birkinshaw等[53]
(2012年)
ERS-2/30 m/35 d
ENVISAT/350 m/35 d
Landsat/30 m/16 d
亚洲湄公河和北极鄂毕河 联合水位、河宽和河道坡度估算流量,NSE介于0.86~0.9之间
Sichangi等[55]
(2016年)
MODIS/250 m/8 d
10 个测高卫星数据
全球8 条河流 使用卫星反演水位和有效河宽估算流量,NSE介于0.60~0.97之间
Bjerklie等[54]
(2018年)
Jason-2/12.5 m/10 d
ICESat/70 m/91 d
Landsat/30 m/16 d
北美育空河 采用曼宁公式和普朗特卡门公式2种物理流阻方程估算流量
Yang等[4]
(2019年)
航空遥感(无人机) 中国新疆10 条河流 坡度-面积法与无人机遥感技术结合,能够估算无资料地区河流流量
Tab.1  A review of related researches on estimating river flows using remote sensing
[1] Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols,climate, and the hydrological cycle[J]. Science, 2001, 294(5549):2119-2124.
doi: 10.1126/science.1064034 pmid: 11739947
[2] Deangelis A M, Qu X, Zelinka M, et al. An observational radiative constraint on hydrologic cycle intensification[J]. Nature, 2015, 528(7581):249-253.
doi: 10.1038/nature15770
[3] Li Y, Piao S, Li L Z, et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China[J]. Science Advances, 2018, 4(5):eaar4182.
doi: 10.1126/sciadv.aar4182 url: https://www.science.org/doi/10.1126/sciadv.aar4182
[4] Yang S, Wang P, Lou H, et al. Estimating river discharges in ungauged catchments using the slope-area method and unmanned aerial vehicle[J]. Water, 2019, 11(11):2361.
doi: 10.3390/w11112361 url: https://www.mdpi.com/2073-4441/11/11/2361
[5] Fekete B M, Vrsmarty C J. The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements[C]// Proceeding of Predictions in Ungauged Basins. 2007, 309(20):129-136.
[6] Gleason C J, Durand M T. Remote sensing of river discharge:A review and a framing for the discipline[J]. Remote Sensing, 2020, 12(7):1107.
doi: 10.3390/rs12071107 url: https://www.mdpi.com/2072-4292/12/7/1107
[7] Smith L C, Yang K, Pitcher L H, et al. Direct measurements of meltwater runoff on the Greenland ice sheet surface[C]// Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50):e10622-e10631.
[8] 陈晓宏, 钟睿达, 王兆礼, 等. 新一代GPM IMERG卫星遥感降水数据在中国南方地区的精度及水文效用评估[J]. 水利学报, 2017, 48(10):1147-1156.
[8] Chen X H, Zhong R D, Wang Z L, et al. Evaluation on the accuracy and hydrological performance of the latest-generation GPM IMERG product over South China[J]. Journal of Hydraulic Engineering, 2017, 48(10):1147-1156.
[9] 王兆礼, 钟睿达, 赖成光, 等. TRMM卫星降水反演数据在珠江流域的适用性研究——以东江和北江为例[J]. 水科学进展, 2017, 28(2):174-182.
[9] Wang Z L, Zhong R D, Lai C G, et al. Evaluation of TRMM 3B42-V7 satellite-based precipitation data product in the Pearl River basin,China:Dongjiang River and Beijiang River basin as examples[J]. Advances in Water Science, 2017, 28(2):174-182.
[10] Sheffield J, Wood E F, Pan M, et al. Satellite remote sensing for water resources management:Potential for supporting sustainable development in data-poor regions[J]. Water Resources Research, 2018, 54(12):9724-9758.
doi: 10.1029/2017WR022437 url: https://onlinelibrary.wiley.com/doi/abs/10.1029/2017WR022437
[11] 周启鸣, 李剑锋, 崔爱红, 等. 中亚干旱区陆地水资源评估方法与挑战[J]. 水文, 2021, 41(1):15-21,72.
[11] Zhou Q M, Li J F, Cui A H, et al. The state-of-the-art and prospective of terrestrial water resource assessment in central Asia arid zone[J]. Journal of China Hydrology, 2021, 41(1):15-21,72.
[12] Alsdorf D E. Tracking freshwater from space[J]. Science, 2003, 301(5639):1098-1112.
[13] Bjerklie D M, Ayotte J D, Cahillane M J. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire[R]. US Geological Survey Scientific Investigations Report: Reston, VA,USA, 2015.
[14] 杨胜天, 王鹏飞, 王娟, 等. 结合无人机航空摄影测量的河道流量估算[J]. 遥感学报, 2021, 25(6):1284-1293.
[14] Yang S T, Wang P F, Wang J, et al. River flow estimation method based on UAV aerial photogrammetry[J]. Journal of Remote Sensing, 2021, 25(6):1284-1293.
[15] Güntner A. Improvement of global hydrological models using GRACE data[J]. Surveys in Geophysics, 2008, 29(4):375-397.
doi: 10.1007/s10712-008-9038-y url: http://link.springer.com/10.1007/s10712-008-9038-y
[16] Li Q, Zhong B, Luo Z, et al. GRACE-based estimates of water discharge over the Yellow River basin[J]. Geodesy and Geodynamics, 2016, 7(3):187-193.
doi: 10.1016/j.geog.2016.04.007 url: https://linkinghub.elsevier.com/retrieve/pii/S1674984716300271
[17] Simons G, Bastiaanssen W, Ngo L A, et al. Integrating global satellite-derived data products as a pre-analysis for hydrological modelling studies:A case study for the Red River basin[J]. Remote Sensing, 2016, 8(4):279.
doi: 10.3390/rs8040279 url: http://www.mdpi.com/2072-4292/8/4/279
[18] Laiolo P, Gabellani S, Campo L, et al. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 48:131-145.
doi: 10.1016/j.jag.2015.06.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243415001312
[19] Zhang D, Liu X, Bai P, et al. Suitability of satellite-based precipitation products for water balance simulations using multiple observations in a humid catchment[J]. Remote Sensing, 2019, 11(2):151.
doi: 10.3390/rs11020151 url: http://www.mdpi.com/2072-4292/11/2/151
[20] Kittel C M, Arildsen A L, Dybkjae S, et al. Informing hydrological models of poorly gauged river catchments:A parameter regionalization and calibration approach[J]. Journal of Hydrology, 2020, 587:124999.
doi: 10.1016/j.jhydrol.2020.124999 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169420304595
[21] Getirana A C V, Boone A, Yamazaki D, et al. Automatic parameterization of a flow routing scheme driven by Radar altimetry data:Evaluation in the Amazon basin[J]. Water Resources Research, 2013, 49(1):614-629.
doi: 10.1002/wrcr.20077 url: http://doi.wiley.com/10.1002/wrcr.20077
[22] Liu G, Schwartz F W, Tseng K H, et al. Discharge and water-depth estimates for ungauged rivers:Combining hydrologic,hydraulic,and inverse modeling with stage and water-area measurements from satellites[J]. Water Resources Research, 2015, 51(8):6017-6035.
doi: 10.1002/2015WR016971 url: http://doi.wiley.com/10.1002/2015WR016971
[23] Sun W, Fan J, Wang G, et al. Calibrating a hydrological model in a regional river of the Qinghai-Tibet Plateau using river water width determined from high spatial resolution satellite images[J]. Remote Sensing of Environment, 2018, 214:100-114.
doi: 10.1016/j.rse.2018.05.020 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718302414
[24] Wongchuig-Correa S, de Paiva R C D, Biancamaria S, et al. Assimilation of future SWOT-based river elevations,surface extent observations and discharge estimations into uncertain global hydrological models[J]. Journal of Hydrology, 2020, 590:125473.
doi: 10.1016/j.jhydrol.2020.125473 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169420309331
[25] Huang Q, Long D, Du M, et al. Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry:Implications for the SWOT mission[J]. Water Resources Research, 2020, 56(7):e2020WR027309.
[26] Leopold L B, Maddock T. The hydraulic geometry of stream channels and some physiographic implications[M]. Washington D C: US Government Printing Office, 1953.
[27] Kouraev A V, Zakharova E A, Samain O, et al. Ob’river discharge from TOPEX/Poseidon satellite altimetry (1992—2002)[J]. Remote Sensing of Environment, 2004, 93(1-2):238-245.
doi: 10.1016/j.rse.2004.07.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425704002184
[28] Zakharova E A, Kouraev A V, Cazenave A, et al. Amazon River discharge estimated from TOPEX/Poseidon altimetry[J]. Comptes Rendus Geoscience, 2006, 338(3):188-196.
doi: 10.1016/j.crte.2005.10.003 url: https://linkinghub.elsevier.com/retrieve/pii/S1631071305003226
[29] Zakharova E A, Krylenko I N, Kouraev A V. Use of non-polar orbiting satellite Radar altimeters of the Jason series for estimation of river input to the Arctic Ocean[J]. Journal of Hydrology, 2019, 568:322-333.
doi: 10.1016/j.jhydrol.2018.10.068
[30] Birkinshaw S J, O’Donnell G M, Moore P, et al. Using satellite altimetry data to augment flow estimation techniques on the Mekong River[J]. Hydrological Processes, 2010, 24(26):3811-3825.
doi: 10.1002/hyp.v24.26 url: http://doi.wiley.com/10.1002/hyp.v24.26
[31] Papa F, Bala S K, Pandey R K, et al. Ganga-Brahmaputra River discharge from Jason-2 Radar altimetry:An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the bay of Bengal[J]. Journal of Geophysical Research:Oceans, 2012, 117(c11):c11021.
[32] Papa F, Durand F, Rossow W B, et al. Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008[J]. Journal of Geophysical Research, 2010, 115(c12):c12013.
[33] Junqueira A M, Mao F, Mendes T S G, et al. Estimation of river flow using CubeSats remote sensing[J]. Science of the Total Environment, 2021, 788:147762.
doi: 10.1016/j.scitotenv.2021.147762 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969721028333
[34] Smith L C, Isacks B L, Bloom A L, et al. Estimation of discharge from three braided rivers using synthetic aperture Radar satellite imagery:Potential application to ungaged basins[J]. Water Resources Research, 1996, 32(7):2021-2034.
doi: 10.1029/96WR00752 url: http://doi.wiley.com/10.1029/96WR00752
[35] Smith L C, Isacks B L, Forster R R, et al. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture Radar:First results[J]. Water Resources Research, 1995, 31(5):1325-1329.
doi: 10.1029/95WR00145 url: http://doi.wiley.com/10.1029/95WR00145
[36] Smith L C, Pavelsky T M. Estimation of river discharge,propagation speed,and hydraulic geometry from space:Lena River,Siberia[J]. Water Resources Research, 2008, 44(3):W03247.
[37] Pavelsky T M. Using width-based rating curves from spatially discontinuous satellite imagery to monitor river discharge[J]. Hydrological Processes, 2014, 28(6):3035-3040.
[38] Elmi O, Tourian M J, Sneeuw N. River discharge estimation using channel width from satellite imagery[C]// Proceedings of the Geoscience and Remote Sensing Symposium, 2015:727-730.
[39] Brakenridge G R, Nghiem S V, Anderson E, et al. Orbital microwave measurement of river discharge and ice status[J]. Water Resources Research, 2007, 43(4):W04405.
[40] Tarpanelli A, Brocca L, Lacava T, et al. Toward the estimation of river discharge variations using MODIS data in ungauged basins[J]. Remote Sensing of Environment, 2013, 136:47-55.
doi: 10.1016/j.rse.2013.04.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425713001375
[41] Tarpanelli A, Amarnath G, Brocca L, et al. Discharge estimation and forecasting by MODIS and altimetry data in Niger-Benue River[J]. Remote Sensing of Environment, 2017, 195:96-106.
doi: 10.1016/j.rse.2017.04.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717301657
[42] Revilla-Romero B, Thielen J, Salamon P, et al. Evaluation of the satellite-based global flood detection system for measuring river discharge:Influence of local factors[J]. Hydrology and Earth System Sciences, 2014, 18(11):4467-4484.
doi: 10.5194/hess-18-4467-2014 url: https://hess.copernicus.org/articles/18/4467/2014/
[43] 许继军, 屈星, 曾子悦, 等. 基于高精度遥感亮温的典型流域河道径流模拟分析[J]. 水科学进展, 2021, 32(6):877-889.
[43] Xu J J, Qu X, Zeng Z Y, et al. River runoff simulation and analysis for typical basins based on high- resolution brightness temperature observations[J]. Advances in Water Science, 2021, 32(6):877-889.
[44] Van Dijk A I, Brakenridge G R, Kettner A J, et al. River gauging at global scale using optical and passive microwave remote sensing[J]. Water Resources Research, 2016, 52(8):6404-6418.
doi: 10.1002/wrcr.v52.8 url: https://onlinelibrary.wiley.com/toc/19447973/52/8
[45] Kim S, Sharma A. The role of floodplain topography in deriving basin discharge using passive microwave remote sensing[J]. Water Resources Research, 2019, 55(2):1707-1716.
doi: 10.1029/2018WR023627 url: https://onlinelibrary.wiley.com/doi/10.1029/2018WR023627
[46] Li H, Li H, Wang J, et al. Extending the ability of near-infrared images to monitor small river discharge on the northeastern Tibetan Plateau[J]. Water Resources Research, 2019, 55(11):8404-8421.
doi: 10.1029/2018WR023808 url: https://onlinelibrary.wiley.com/doi/10.1029/2018WR023808
[47] Gleason C J, Smith L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[C]// Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13):4788.
[48] Gleason C J, Smith L C, Lee J. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry:Sensitivity to river form and optimization parameters[J]. Water Resources Research, 2014, 50(12):9604-9619.
doi: 10.1002/wrcr.v50.12 url: https://onlinelibrary.wiley.com/toc/19447973/50/12
[49] Rao K D, Shravya A, Dadhwal V. A novel method of satellite based river discharge estimation using river hydraulic geometry through genetic algorithm technique[J]. Journal of Hydrology, 2020, 589:125361.
doi: 10.1016/j.jhydrol.2020.125361 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169420308210
[50] Mengen D, Ottinger M, Leinenkugel P, et al. Modeling river discharge using automated river width measurements derived from Sentinel-1 time series[J]. Remote Sensing, 2020, 12(19):3236.
doi: 10.3390/rs12193236 url: https://www.mdpi.com/2072-4292/12/19/3236
[51] Hagemann M W, Gleason C J, Durand M T. BAM:Bayesian AMHG-manning inference of discharge using remotely sensed stream width,slope,and height[J]. Water Resources Research, 2017, 53(11):9692-9707.
doi: 10.1002/wrcr.v53.11 url: https://onlinelibrary.wiley.com/toc/19447973/53/11
[52] Bjerklie D M, Lawrence D S, Vorosmarty C J, et al. Evaluating the potential for measuring river discharge from space[J]. Journal of Hydrology, 2003, 278(1-4):17-38.
doi: 10.1016/S0022-1694(03)00129-X url: https://linkinghub.elsevier.com/retrieve/pii/S002216940300129X
[53] Birkinshaw S J, Moore P, Kilsby C G, et al. Daily discharge estimation at ungauged river sites using remote sensing[J]. Hydrological Processes, 2012, 28(3):1043-1054.
doi: 10.1002/hyp.v28.3 url: http://doi.wiley.com/10.1002/hyp.v28.3
[54] Bjerklie D M, Birkett C M, Jones J W, et al. Satellite remote sensing estimation of river discharge:Application to the Yukon River Alaska[J]. Journal of Hydrology, 2018, 561:1000-1018.
doi: 10.1016/j.jhydrol.2018.04.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169418302464
[55] Sichangi A W, Wang L, Yang K, et al. Estimating continental river basin discharges using multiple remote sensing data sets[J]. Remote Sensing of Environment, 2016, 179:36-53.
doi: 10.1016/j.rse.2016.03.019 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716301110
[56] Huang Q, Long D, Du M, et al. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data[J]. Remote Sensing of Environment, 2018, 211:112-128.
doi: 10.1016/j.rse.2018.04.018 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718301731
[57] Kebede M G, Wang L, Yang K, et al. Discharge estimates for ungauged rivers flowing over complex high-mountainous regions based solely on remote sensing-derived datasets[J]. Remote Sensing, 2020, 12(7):1064.
doi: 10.3390/rs12071064 url: https://www.mdpi.com/2072-4292/12/7/1064
[58] Garambois P A, Monnier J. Inferrence of effective river properties from remotely sensed observations of water surface[J]. Advances in Water Resources, 2015, 79:103-120.
doi: 10.1016/j.advwatres.2015.02.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0309170815000330
[59] Yang S, Li C, Lou H, et al. Performance of an unmanned aerial vehicle (UAV) in calculating the flood peak discharge of ephemeral rivers combined with the incipient motion of moving stones in arid ungauged regions[J]. Remote Sensing, 2020, 12(10):1610.
doi: 10.3390/rs12101610 url: https://www.mdpi.com/2072-4292/12/10/1610
[60] Wufu A, Chen Y, Yang S, et al. Changes in glacial meltwater runoff and its response to climate change in the Tianshan region detected using unmanned aerial vehicles (UAVs) and satellite remote sensing[J]. Water, 2021, 13(13):1753.
doi: 10.3390/w13131753 url: https://www.mdpi.com/2073-4441/13/13/1753
[61] Thakur P K, Nikam B R, Garg V, et al. Hydrological parameters estimation using remote sensing and GIS for Indian region:A review[C]// Proceedings of the National Academy of Sciences India Section A: Physical Sciences, 2017, 87(4):641-659.
[62] Turnipseed D P, Sauer V B. Discharge measurements at gaging stations[R]. US Geological Survey, 2010.
[63] Romeiser R, Runge H, Suchandt S, et al. Current measurements in rivers by spaceborne along-track InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12):4019-4031.
doi: 10.1109/TGRS.2007.904837 url: http://ieeexplore.ieee.org/document/4378563/
[64] Romeiser R, Suchandt S, Runge H, et al. First analysis of TerraSAR-X along-track InSAR-derived current fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2):820-829.
doi: 10.1109/TGRS.2009.2030885 url: http://ieeexplore.ieee.org/document/5299033/
[65] Kaab A, Leprince S. Motion detection using near-simultaneous satellite acquisitions[J]. Remote Sensing of Environment, 2014, 154:164-179.
doi: 10.1016/j.rse.2014.08.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714003125
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] LOU Yanhan, LIAO Jingjuan, CHEN Jiaming. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 221-229.
[5] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[6] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[7] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[8] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[9] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[10] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
[11] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[12] WANG Haiwen, JIA Junqing, LI Beichen, DONG Yongping, HA Sier. Assessing intensive urban land use based on remote sensing images and industry survey data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 149-156.
[13] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[14] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[15] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech