Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 56-62     DOI: 10.6046/zrzyyg.2021216
|
Construction of new vegetation water index based on PROSPECT-VISIR model
WANG Jie1(), WANG Guanghui1,2(), LIU Yu1, QI Jianwei1, ZHANG Tao1
1. Land Satellite Remote Sensing Application Center, MNR, Beijing 100048, China
2. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
Download: PDF(3541 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, the leaf reflectance simulation data of visible to mid-infrared spectral range under the condition of different leaf parameters were obtained using the PROSPECT-VISIR leaf model. The spectral characteristic bands of vegetation leaves were analyzed to find the range of bands within which leaf reflectance is sensitive to changes in water content. On the basis of several common vegetation water indexes derived from visible and near-infrared bands, four new vegetation water index models were proposed by addition of the reflectance of the mid-infrared band, namely mid-infrared normalized difference infrared index (NDIIM), mid-infrared normalized difference water index (NDWIM), mid-infrared normalized multi-band drought index (NMDIM) and mid-infrared normalized difference vegetation index (NDVIM). Based on the leaf reflectance simulation data, the sensitivity of four new vegetation water indexes and that of common water index to leaf water content were compared, and the quantitative relationship model between, on one hand, new vegetation water index and, on the other hand, leaf water content and dry matter content, was established. The fitting degree of NMDIM was 0.972, showing the best performance. Finally, a leaf water content estimation model was developed based on two new vegetation water indexes NMDIM and NDIIM so that accurate estimation of leaf water content can be achieved even when the dry matter content is unknown (the root mean square error of the model was 0.002 1g/cm2).

Keywords leaf radiative transfer model      vegetation water index      mid-infrared reflectance      leaf water content     
ZTFLH:  TP79  
Corresponding Authors: WANG Guanghui     E-mail: wangjie0039@163.com;wanggh@lasac.cn
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie WANG
Guanghui WANG
Yu LIU
Jianwei QI
Tao ZHANG
Cite this article:   
Jie WANG,Guanghui WANG,Yu LIU, et al. Construction of new vegetation water index based on PROSPECT-VISIR model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 56-62.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021216     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/56
Fig.1  Relationship between leaf reflectance and 3 leaf parameters
Fig.2  Relationship of leaf reflectance with water content and dry matter content
传统植
被指数
公式 新型植
被指数
公式
NDII NDII = $\frac{\rho_{820}\ \ -\ \rho_{1600}}{\rho_{820}\ \ +\ \rho_{1600}}$ NDIIM NDIIM= $\frac{\rho_{1600}\ \ -\ \rho_{4200}}{\rho_{1600}\ \ +\ \rho_{4200}}$
NDWI NDWI= $\frac{\rho_{860}\ \ -\ \rho_{1240}}{\rho_{860}\ \ +\ \rho_{1240}}$ NDWIM NDWIM= $\frac{\rho_{1240}\ \ -\ \rho_{4200}}{\rho_{1240}\ \ +\ \rho_{4200}}$
NMDI NMDI= $\frac{\rho_{860}\ \ -\ (\rho_{1640}\ \ -\ \rho_{2130}\ \ )}{\rho_{860}\ \ +\ (\rho_{1640}\ \ +\ \rho_{2130}\ \ )}$ NMDIM NMDIM= $\frac{\rho_{860}\ \ -\ (\rho_{4200}\ \ -\ \rho_{2130}\ \ )}{\rho_{860}\ \ +\ (\rho_{4200}\ \ +\ \rho_{2130}\ \ )}$
NDVI NDVI= $\frac{\rho_{895}\ \ -\ \rho_{675}}{\rho_{895}\ \ +\ \rho_{675}}$ NDVIM NDVIM= $\frac{\rho_{895}\ \ -\ \rho_{4200}}{\rho_{895}\ \ +\ \rho_{4200}}$
Tab.1  Four new water index of vegetation
Fig.3  Relationship between new water index, traditional water index and leaf water content
关系式 R2 RMSE
NDIIM = 0.792 7 + 0.017 1×lnCw 0.912 2.885e-4
NDWIM = 0.887 2 +0.011 8×lnCw 0.963 1.263e-4
NMDIM = 0.896 8 +0.031 2×lnCw 0.997 9.268e-5
NDVIM= 0.876 2 +0.028 7×lnCw 0.994 1.179e-4
Tab.2  Relationship between new vegetation water index and leaf water content
Fig.4  Relationship between new water index, traditional water index and leaf dry matter content
关系式 R2 RMSE
NDIIM= 0.762 2 - 2.840Cm 0.982 1.386e-4
NDWIM = 0.791 3 -0.998Cm 0.905 1.182e-4
NMDIM = 0.861 3 -1.981Cm 0.991 6.697e-5
NDVIM = 0.800 1 -0.931Cm 0.901 1.188e-4
Tab.3  Relationship between new vegetation water index and leaf dry matter content
新型植
被指数
a0 a1 a2 R2 RMSE
NDIIM 0.703 -0.015 0 -2.987 0.932 0.001 7
NDWIM 0.789 -0.000 7 -1.115 0.811 0.003 9
NMDIM 0.840 -0.005 0 -2.002 0.972 0.001 3
NDVIM 0.812 -0.002 6 -1.043 0.837 0.002 7
Tab.4  Coefficients of four vegetation water index
Fig.5  Comparison between the retrieved value and actual value of water content
Fig.6  Comparison between the retrieved value and actual value of water content
[1] Datt B. Remote sensing of water content in Eucalyptus leaves[J]. Australian Journal of Botany, 1999, 47(6):909-923.
doi: 10.1071/BT98042 url: http://www.publish.csiro.au/?paper=BT98042
[2] Penuelas J, Gamon J A, Griffin K L, et al. Assessing community type,plant biomass,pigment composition,and photosynthetic efficiency of aquatic vegetation from spectral reflectance[J]. Remote Sensing of Environment, 1993, 46(2):110-118.
doi: 10.1016/0034-4257(93)90088-F url: https://linkinghub.elsevier.com/retrieve/pii/003442579390088F
[3] Bauer M E, Daughtry C S T, Biehl L L, et al. Field spectroscopy of agricultural crops[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986(1):65-75.
[4] Chuvieco E, Riaño D, Aguado I, et al. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data:Applications in fire danger assessment[J]. International Journal of Remote Sensing, 2002, 23(11):2145-2162.
doi: 10.1080/01431160110069818 url: https://www.tandfonline.com/doi/full/10.1080/01431160110069818
[5] Hunt E R, Rock B N, Nobel P S. Measurement of leaf relative water content by infrared reflectance[J]. Remote Sensing of Environment, 1987, 22(3):429-435.
doi: 10.1016/0034-4257(87)90094-0 url: https://linkinghub.elsevier.com/retrieve/pii/0034425787900940
[6] Bannari A, Morin D, Bonn F, et al. A review of vegetation indices[J]. Remote Sensing Reviews, 1995, 13(1-2):95-120.
doi: 10.1080/02757259509532298 url: http://www.tandfonline.com/doi/abs/10.1080/02757259509532298
[7] Peñuelas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance water index WI (R900/R970)[J]. International Journal of Remote Sensing, 1997, 18(13):2869-2875.
doi: 10.1080/014311697217396 url: https://www.tandfonline.com/doi/full/10.1080/014311697217396
[8] Ceccato P, Gobron N, Flasse S, et al. Designing a spectral index to estimate vegetation water content from remote sensing data:Part 1:Theoretical approach[J]. Remote Sensing of Environment, 2002, 82(2):188-197.
doi: 10.1016/S0034-4257(02)00037-8 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702000378
[9] Hardisky M, Klemas V, Smart M. The influence of soil salinity,growth form,and leaf moisture on the spectral radiance[J]. Spartina Alterniflora, 1983, 49:77-83.
[10] Gao B C. NDWI:A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
doi: 10.1016/S0034-4257(96)00067-3 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425796000673
[11] Wang L L,and John J Q. NMDI:A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing[J]. Geophysical Research Letters, 2007, 34:20.
[12] Rouse J W, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA Special Publication, 1974, 351:309.
[13] Boyd D S. The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 mu m)[J]. International Journal of Remote Sensing, 1999, 20(5):1017-1023.
doi: 10.1080/014311699213055 url: https://www.tandfonline.com/doi/full/10.1080/014311699213055
[14] Kaufman Y J, Remer L A. Detection of forests using mid-IR reflectance:An application for aerosol studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3):672-683.
doi: 10.1109/36.297984 url: http://ieeexplore.ieee.org/document/297984/
[15] Carter G A. Primary and secondary effects of water content on the spectral reflectance of leaves[J]. American Journal of Botany, 1991, 78(7): 916-924.
doi: 10.1002/j.1537-2197.1991.tb14495.x url: https://onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1991.tb14495.x
[16] Libonati R, DaCamara C C, Pereira J M C, et al. A new optimal index for burnt area discrimination in satellite imagery[C]// 2007 EUMETSAT Meteorological Satellite Conference and the 15th American Meteorological Society (AMS) Satellite Meteorological & Oceanography Conference.Germany:Darmstadt, 2007:24-28.
[17] Vescovo L, Gianelle D. Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy)[J]. Advances in Space Research, 2008, 41(11):1764-1772.
doi: 10.1016/j.asr.2007.07.043 url: https://linkinghub.elsevier.com/retrieve/pii/S0273117707008472
[18] Tang B H, Jia Y Y, Zhang X, et al. Vegetation monitoring with surface bi-directional reflectivities in MODIS near-IR and mid-IR channels[C]// International Geoscience and Remote Sensing Symposium.IEEE, 2007:3333-3336.
[19] Ullah S, Skidmore A K, Naeem M, et al. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis[J]. Science of the Total Environment, 2012, 437:145-152.
doi: 10.1016/j.scitotenv.2012.08.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969712010960
[20] Ullah S, Skidmore A K, Ramoelo A, et al. Retrieval of leaf water content spanning the visible to thermal infrared spectra[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:56-64.
doi: 10.1016/j.isprsjprs.2014.04.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271614000926
[21] Arshad M, Ullah S, Khurshid K, et al. Estimation of leaf water content from mid-and thermal-infrared spectra by coupling genetic algorithm and partial least squares regression[J]. Journal of Applied Remote Sensing, 2018, 12(2):022203.
[22] Jacquemoud S, Baret F. PROSPECT:A model of leaf optical properties spectra[J]. Remote Sensing of Environment, 1990, 34(2):75-91.
doi: 10.1016/0034-4257(90)90100-Z url: https://linkinghub.elsevier.com/retrieve/pii/003442579090100Z
[23] Gerber F, Marion R, Olioso A., et al. Modeling directional-hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 μm to 5.7 μm with the PROSPECT-VISIR model[J]. Remote Sensing of Environment, 2011, 115(2):404-414.
doi: 10.1016/j.rse.2010.09.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710002841
[1] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[2] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[3] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[4] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[5] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[6] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[7] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[8] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[9] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[10] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[11] YANG Yujin, YANG Fan, XU Zhenni, LI Zhu. Analysis and optimization of the spatio-temporal coordination between the ecological services and economic development in the Dongting Lake area[J]. Remote Sensing for Natural Resources, 2023, 35(3): 190-200.
[12] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[13] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[14] LOU Yanhan, LIAO Jingjuan, CHEN Jiaming. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 221-229.
[15] ZHOU Shisong, TANG Yuqi, CHENG Yuxiang, ZOU Bin, FENG Huihui. Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech