Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 121-128     DOI: 10.6046/zrzyyg.2021233
|
Impacts of the Syrian Civil War on vegetation
ZENG Hui1(), REN Huazhong1,2(), ZHU Jinshun1, GUO Jinxin1, YE Xin1, TENG Yuanjian1, NIE Jing1, QIN Qiming1,2
1. Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China
2. Beijing Key Laboratory of Spatial Information Integration and Its Application, Peking University, Beijing 100871, China
Download: PDF(4139 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Besides numerous casualties and economic losses, wars may cause damage to the environment. Using a long time series of satellite remote sensing data from 2001 to 2018, this study explored the response of vegetation growth to the environmental changes in Syria caused by the Syrian Civil War. The results are as follows. The vegetation index significantly decreased in regions that experienced the most intense conflict in the war. The land types changed slightly from 2011 when the war started to 2015 but changed significantly from 2015 to 2018, with the grassland area decreasing by 10.08% and the crop planting area decreasing by 21.87%. This study further explored the impacts of human activities on the vegetation status, revealing that both sides of the Euphrates River in the east and their extensional areas are most significantly affected by human activities. This study discovered the negative impacts of the war on vegetation growth and can be utilized as a reference for the research and strategy formulation on food security in areas with military conflicts.

Keywords NDVI      time series      vegetation      Syrian Civil War     
ZTFLH:  TP79  
Corresponding Authors: REN Huazhong     E-mail: zenghui@pku.edu.cn;renhuazhong@pku.edu.cn
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui ZENG
Huazhong REN
Jinshun ZHU
Jinxin GUO
Xin YE
Yuanjian TENG
Jing NIE
Qiming QIN
Cite this article:   
Hui ZENG,Huazhong REN,Jinshun ZHU, et al. Impacts of the Syrian Civil War on vegetation[J]. Remote Sensing for Natural Resources, 2022, 34(3): 121-128.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021233     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/121
Fig.1  Surface classification map of the study area in 2001
Fig.2  Interannual phenology changes in Syrian crop area by dynamic threshold method after reconstruction of AG algorithm
β Z NDVI变化趋势
>0 ≥1.96 显著增长
>0 (-1.96,1.96) 轻微增长
0 (-1.96,1.96) 稳定或无植被区域
<0 (-1.96,1.96) 轻微退化
<0 ≤-1.96 显著退化
Tab.1  Variation levels of the NDVI change trend
β Z H NDVI变化趋势 β Z H NDVI变化趋势
>0 ≥1.96 >0.5 一致且显著增长 <0 (-1.96,1.96) <0.5 从增长到退化
>0 (-1.96,1.96) >0.5 一致且轻微增长 <0 (-1.96,1.96) >0.5 一致且轻微退化
>0 (-1.96,1.96) <0.5 从退化到增长 <0 ≤-1.96 >0.5 一致且显著退化
0 (-1.96,1.96) 0.5 稳定无变化
Tab.2  Division of the degrees of variation of the NDVI change trend
Fig.3  Trend analysis results during the study period
Fig.4  Annual variation trends of NDVI during the growing season of different surface types in Syria (2001—2018)
像素数 荒原 作物 灌木 草地 2018年
合计
荒原 98 531 504 6 349 1 535 107 036
作物 21 32 865 543 582 34 406
灌木 639 8 621 18 674 1 927 29 869
草地 403 1 423 1 198 4 625 7 938
2001年
合计
99 596 44 035 26 785 8 828
总变化数 7 440 -9 629 3 084 -890
变化率/% 7.47 -21.87 11.51 -10.08
Tab.3  Syria land cover transfer matrix
Fig.5  Pixel change of barren and crop land(2001—2018)
Fig.6  Analysis results of future change trends
Fig.7  Rainfall data and residual analysis results in the growing season in Syria
[1] 孙红雨, 王长耀. 中国地表植被覆盖变化及其与气候因子关系──基于NOAA时间序列数据分析[J]. 遥感学报, 1998, 2(3):204-210.
[1] Sun H Y, Wang C Y. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data[J]. Journal of Remote Sensing, 1998, 2(3):204-210.
[2] Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA Special Publication, 1974, 351(1974):309.
[3] 田庆久, 闵祥军. 植被指数研究进展[J]. 地球科学进展, 1998, 13(4):327-333.
[3] Tian Q J, Min X J. Advances in study on vegetation indices[J]. Advance in Earth Sciences, 1998, 13(4):327-333.
[4] Li X, Li D. Can night-time light images play a role in evaluating the Syrian crisis?[J]. International Journal of Remote Sensing, 2014, 35(18):6648-6661.
doi: 10.1080/01431161.2014.971469 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2014.971469
[5] Li X, Chen F, Chen X. Satellite-observed nighttime light variation as evidence for global armed conflicts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5):2302-2315.
doi: 10.1109/JSTARS.2013.2241021 url: https://ieeexplore.ieee.org/document/6502753/
[6] Huete A, Didan K, van Leeuwen W.MODIS vegetation indices[M]// Land remote sensing and global environmental change. New York: Springer, 2010:579-602.
[7] Beck H E, McVicar T R, van Dijk A I J M. Global evaluation of four AVHRR-NDVI data sets:Intercomparison and assessment against Landsat imagery[J]. Remote Sensing of Environment, 2011, 115(10):2547-2563.
doi: 10.1016/j.rse.2011.05.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711001957
[8] Huete A, Justice C, Van Leeuwen W.MODIS vegetation index(MOD13)[J]. Algorithm Theoretical Basis Document, 1999, 3(213):295-309.
[9] Harris I, Jones P D, Osborn T J. Updated high-resolution grids of monthly climatic observations:The CRU TS3.10 Dataset[J]. International Journal of Climatology, 2014, 34(3):623-642.
doi: 10.1002/joc.3711 url: https://onlinelibrary.wiley.com/doi/10.1002/joc.3711
[10] Fick S E, Hijmans R J. WorldClim 2:New 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12):4302-4315.
doi: 10.1002/joc.5086 url: https://onlinelibrary.wiley.com/doi/10.1002/joc.5086
[11] 柯灵红, 王正兴, 宋春桥. 青藏高原东北部 MODIS LST 时间序列重建及与台站地温比较[J]. 地理科学进展, 2011, 30(7):819-826.
[11] Ke L H, Wang Z X, Song C Q. Reconstruction of MODIS LST time series and comparison with land surface temperature among observation stations in the northeast Qinghai-Tibet Plateau[J]. Progress in Geography, 2011, 30(7):819-826.
[12] 曹云锋, 王正兴, 邓芳萍. 3种滤波算法对 NDVI 高质量数据保真性研究[J]. 遥感技术与应用, 2010, 25(1):118-125.
[12] Cao Y F, Wang Z X, Deng F P. Fidelity performance of three filters for high quality NDVI Time-series analysis[J]. Remote Sensing Technology and Application, 2010, 25(1):118-125.
[13] Jönsson P, Eklundh L. TIMESAT:A program for analyzing time-series of satellite sensor data[J]. Computers and Geosciences, 2004, 30(8):833-845.
doi: 10.1016/j.cageo.2004.05.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0098300404000974
[14] Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geo-science and Remote Sensing, 2002, 40(8):1824-1832.
doi: 10.1109/TGRS.2002.802519 url: http://ieeexplore.ieee.org/document/1036010/
[15] Eklundh L, Jönsson P. TIMESAT 3.3 with seasonal trend decomposition and parallel processing software manual[R]. Sweden: Lund and Malmö University, 2017.
[16] 宋春桥, 柯灵红, 游松财. 基于 TIMESAT 的 3 种时序 NDVI 拟合方法比较研究[J]. 遥感技术与应用, 2011, 26(2):147-154.
[16] Song C Q, Ke L H, You S C. Comparison of three NDVI time-series fitting methods based on TIMESAT:Taking the grassland in Northern Tibet as case[J]. Remote Sensing Technology and Application, 2011, 26(2):147-154.
[17] Mann H B. Nonparametric tests against trend[J]. Econometrica:Journal of the Econometric Society, 1945:245-259.
[18] Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63(324):1379-1389.
doi: 10.1080/01621459.1968.10480934 url: http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934
[19] Gilbert R O. Statistical methods for environmental pollution monitoring[M]. New York: John Wiley and Sons, 1987.
[20] 王佃来, 刘文萍, 黄心渊. 基于 Sen+ Mann-Kendall 的北京植被变化趋势分析[J]. 计算机工程与应用, 2013, 49(5):13-17.
[20] Wang D L, Liu W P, Huang X Y. Trend analysis in vegetation cover in Beijing based on Sen+ Mann-Kendall method[J]. Computer Engineering and Applications, 2013, 49(5):13-17.
[21] Hurst H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951, 116(1):770-799.
doi: 10.1061/TACEAT.0006518 url: https://ascelibrary.org/doi/10.1061/TACEAT.0006518
[22] Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence[J]. Water Resources Research, 1969, 5(5):967-988.
doi: 10.1029/WR005i005p00967 url: http://doi.wiley.com/10.1029/WR005i005p00967
[23] Evans J, Geerken R. Discrimination between climate and human-induced dryland degradation[J]. Journal of Arid Environments, 2004, 57(4):535-554.
doi: 10.1016/S0140-1963(03)00121-6 url: https://linkinghub.elsevier.com/retrieve/pii/S0140196303001216
[24] Wessels K J, van den Bergh F, Scholes R J. Limits to detectability of land degradation by trend analysis of vegetation index data[J]. Remote Sensing of Environment, 2012, 125:10-22.
doi: 10.1016/j.rse.2012.06.022 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712002581
[25] Abdo H G. Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area,Tartous,Syria[J]. Regional Environmental Change, 2018, 18(6):1707-1719.
doi: 10.1007/s10113-018-1280-3 url: https://doi.org/10.1007/s10113-018-1280-3
[26] Jaafar H H, Zurayk R, King C. Impact of the Syrian conflict on irrigated agriculture in the Orontes basin[J]. International Journal of Water Resources Development, 2015, 31(3):436-449.
doi: 10.1080/07900627.2015.1023892 url: https://www.tandfonline.com/doi/full/10.1080/07900627.2015.1023892
[27] Wessels K J, Prince S D, Malherbe J. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa[J]. Journal of Arid Environments, 2007, 68(2):271-297.
doi: 10.1016/j.jaridenv.2006.05.015 url: https://linkinghub.elsevier.com/retrieve/pii/S014019630600190X
[28] Kelley C P, Mohtadi S, Cane M A. Climate change in the Fertile Crescent and implications of the recent Syrian drought[J]. Proceedings of the National Academy of Sciences, 2015, 112(11):3241-3246.
doi: 10.1073/pnas.1421533112 url: https://pnas.org/doi/full/10.1073/pnas.1421533112
[1] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[2] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[3] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[4] WANG Yating, ZHU Changming, ZHANG Tao, ZHANG Xin, SHI Zhiyu. Remote sensing monitoring and analysis of the vegetation phenological characteristics of the Qinling Mountains-Huanghuai Plain ecotone from 2002 to 2020[J]. Remote Sensing for Natural Resources, 2022, 34(4): 225-234.
[5] QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
[6] ZHANG Siyuan, YUE Chu, YUAN Guoli, YUAN Shuai, PANG Wenqiang, LI Jun. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment[J]. Remote Sensing for Natural Resources, 2022, 34(4): 136-143.
[7] YU Wen, GONG Huili, CHEN Beibei, ZHOU Chaofan. Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing[J]. Remote Sensing for Natural Resources, 2022, 34(4): 183-193.
[8] DONG Jihong, MA Zhigang, LIANG Jingtao, LIU Bin, ZHAO Cong, ZENG Shuai, YAN Shengwu, MA Xiaobo. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources, 2022, 34(3): 73-81.
[9] CHEN Yanying, MA Xincheng, XU Yanping, WANG Ying, WANG Yanbo. Methods for the application of topography and NDVI in re-identification of remote sensing-based monitoring of forest fires[J]. Remote Sensing for Natural Resources, 2022, 34(3): 88-96.
[10] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[11] ZHU Sijia, FENG Huihui, ZOU Bin, YE Shuchao. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors[J]. Remote Sensing for Natural Resources, 2022, 34(3): 196-206.
[12] LUO Hongjian, MING Dongping, XU Lu. Time series calculation of remote sensing ecological index based on GEE[J]. Remote Sensing for Natural Resources, 2022, 34(2): 271-277.
[13] WANG Jie, WANG Guanghui, LIU Yu, QI Jianwei, ZHANG Tao. Construction of new vegetation water index based on PROSPECT-VISIR model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 56-62.
[14] HUANG Pei, PU Junwei, ZHAO Qiaoqiao, LI Zhongjie, SONG Haokun, ZHAO Xiaoqing. Research progress and development trend of remote sensing information extraction methods of vegetation[J]. Remote Sensing for Natural Resources, 2022, 34(2): 10-19.
[15] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech