Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 235-242     DOI: 10.6046/zrzyyg.2021406
|
Remote sensing monitoring and impact intensity assessment of human activities in Henan national nature reserves
WANG Juan(), WANG Zhihong, ZHANG Jianguo, CHU Na, LI Si, YIN Zhan
China Non-Ferrous Metals Resource Geological Survey, Beijing 100012, China
Download: PDF(939 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to determine the impacts of human activities on the ecosystems of Henan national nature reserves in an objective, timely, and accurate manner, so that problems existent in management and protection can be identified and evaluated in time. Based on Chinese high-resolution remote sensing images from 2016 to 2018, this study extracted data on land cover types of national nature reserves in 2016 and human activities in 2016, 2017, and 2018. Then, the source, change type, distribution pattern, and temporal-spatial transformation of new human activities in the reserves were ascertained using the transition matrix. Furthermore, the changing characteristics of human activities in different types of reserves were analyzed. Finally, the impact degree and change patterns of human activities on the reserves were evaluated using the impact intensity index of human activities. The results are as follows. Human activities dominated by agricultural land and residential areas were widespread in Henan national nature reserves in 2016. They were mainly distributed in inland wetlands and paleontological relic reserves. From 2016 to 2018, new human activities were mainly distributed in inland wetland reserves, which were mainly transformed from agricultural land, forest land, grassland, and wetland. From 2016 to 2018, the human activities in the reserves had an impact intensity index range of 0.045~4.735. The impact degrees of human activities on reserves of forest ecological type, inland wetland type, wildlife type, and Paleozoic relic type were slight, significant, general, and severe, respectively. Therefore, the spatial distribution, types, intensity, and dynamic changes of human activities in the reserves can be accurately identified using the remote sensing technology and the impact intensity assessment model. This study can be used as an important guide for scientific assessment and improvement of the management of the reserves.

Keywords human activities      remote sensing monitoring      impact intensity assessment      national nature reserve      Henan Province     
ZTFLH:  TP79  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Juan WANG
Zhihong WANG
Jianguo ZHANG
Na CHU
Si LI
Zhan YIN
Cite this article:   
Juan WANG,Zhihong WANG,Jianguo ZHANG, et al. Remote sensing monitoring and impact intensity assessment of human activities in Henan national nature reserves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 235-242.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021406     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/235
年份 数据类型 分辨率/m 占比/% 拍摄时间
2016—2018年 P1 0.5 0.50 6—10月
BJ2,GF-2,YG24,
WV2
1 14.50
ZY-3,ZY-102C,
GF-1,SPOT6,SPOT7
2 85.00
Tab.1  Remote sensing data information of national nature reserves from 2016 to 2018
人类活动类型 权重 人类活动类型 权重
农业用地 6 采矿用地 40
园地 4 交通运输用地 10
养殖场 10 其他建设用地 15
城镇村庄用地 15
Tab.2  Influence weights of human activities in national nature reserves
影响强度 人类活动情况
严重Ⅴ 人类活动类型和数量很多,采矿活动和开发建设活动明显,影响程度很大
明显Ⅳ 人类活动类型和数量较多,建设用地明显,影响程度大
较明显Ⅲ 以农田、居民用地和养殖场为主要人类活动,建设用地少
一般Ⅱ 以农田为主,基本无人类建设用地
轻微Ⅰ 人类活动非常少,以自然用地为主
Tab.3  Impact intensity grading of human activities in national nature reserves
土地覆盖类型 保护区类型
森林生态 内陆湿地 野生动物 古生物遗迹 合计
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
自然
用地
林地 1 143.23 92.46 279.82 19.38 902.40 84.31 125.69 15.17 2 451.14 53.53
草地 25.53 2.06 126.09 8.73 2.92 0.27 98.89 11.94 253.43 5.53
湿地 28.99 2.34 384.66 26.65 13.91 1.30 8.31 1.00 435.87 9.52
未利用地 1.64 0.13 8.03 0.56 0.20 0.02 9.87 0.22
小计 1 199.39 97.00 798.60 55.32 919.43 85.90 232.89 28.12 3 150.31 68.80
人类
活动
用地
农业用地 28.71 2.32 559.02 38.72 130.07 12.15 560.89 67.72 1 278.69 27.93
园地 3.47 0.28 43.43 3.01 7.35 0.69 0.08 0.01 54.33 1.19
养殖场 6.27 0.43 6.27 0.14
城镇村庄用地 0.69 0.06 16.68 1.16 7.68 0.72 32.75 3.95 57.80 1.26
交通运输用地 2.70 0.19 2.07 0.19 0.98 0.12 5.75 0.13
采矿用地 4.22 0.34 11.21 0.78 3.71 0.35 0.67 0.08 19.81 0.43
其他建设用地 5.67 0.39 0.01 0.04 5.72 0.12
小计 37.09 3.00 644.98 44.68 150.89 14.10 595.41 71.88 1 428.37 31.20
合计 1 236.48 100.00 1 443.58 100.00 1 070.32 100.00 828.30 100.00 4 578.68 100.00
Tab.4  Land use of national nature reserves in 2016
Fig.1  Area and number of different human activities in national nature reserves in 2016
时期 保护区
类型
土地覆被类型面积(数量)/km2(处)
农业用地 采矿用地 居民用地 交通运
输用地
其他建
设用地
人工草地 人工林地 人工湿地 合计
2016—
2017年
森林生态 0.393(39) 0.013(7) 0.043(15) 0.004(2) 0.148(69) 0.601(132)
内陆湿地 1.809(7) 0.318(18) 0.025(1) 0.558(20) 1.738(56) 1.002(4) 0.135(2) 25.739(133) 31.324(241)
野生动物 0.223(13) 0.073(16) 0.044(27) 0.011(2) 0.023(1) 0.237(15) 0.611(74)
古生遗迹 0.379(13) 0.144(7) 0.521(4) 0.064(9) 0.184(2) 1.292(35)
合计 1.809(7) 1.313(83) 0.169(8) 1.165(47) 1.889(107) 1.013(6) 0.162(5) 26.308(219) 33.828(482)
比例/% 5.35(1.45) 3.88(17.22) 0.50(1.65) 3.44(9.75) 5.58(22.20) 2.99(1.24) 0.48(1.04) 77.77(45.44)
2017—
2018年
森林生态 0.109(12) 0.080(16) 0.242(10) 0.431(38)
内陆湿地 0.043(6) 0.115(5) 2.910(22) 0.048(1) 0.340(1) 3.456(35)
野生动物 0.008(6) 0.001(1) 0.009(7)
合计 0.152(18) 0.088(22) 0.358(16) 2.910(22) 0.048(1) 0.340(1) 3.896(80)
比例/% 3.90(22.50) 2.26(27.50) 9.19(20.00) 74.69(27.50) 1.23(1.25) 8.73(1.25)
Tab.5  Area and number of new human activities in national nature reserves from 2016 to 2018
2016年 2017年
采矿用地 城镇村
庄用地
交通运
输用地
其他建
设用地
农业用地 人工草地 人工林地 人工湿地 合计
林地 0.691 0.030 0.388 0.148 0.018 0.164 1.439
草地 0.056 0.318 0.080 0.016 0.612 1.082
湿地 0.779 1.728 0.718 3.225
农业用地 0.566 0.140 0.459 0.883 0.023 25.526 27.597
采矿用地 0.047 0.295 0.138 0.006 0.486
合计 1.313 0.170 1.165 1.890 1.809 1.013 0.161 26.308 33.829
Tab.6  Transition matrix of land use in the national nature reserves from 2016 to 2017(km2)
2017年 2018年
采矿
用地
交通运
输用地
其他建
设用地
人工
草地
人工
林地
人工
湿地
合计
林地 0.148 0.088 0.248 0.484
草地 0.002 0.002
湿地 1.846 1.846
农业
用地
0.004 0.109 0.340 0.453
采矿
用地
1.063 0.048 1.111
合计 0.152 0.088 0.359 2.909 0.048 0.340 3.896
Tab.7  Transition matrix of land use in the national nature reserves from 2017 to 2018(km2)
类型 保护区 2016年 2017年 2018年 2017—2016年差值 2018—2017年差值
森林生态 宝天曼 0.045 0 0.051 0 0.104 8 0.006 0 0.053 8
伏牛山 0.078 7 0.080 1 0.080 1 0.001 4
高乐山 0.550 2 0.567 4 0.575 5 0.017 2 0.008 1
河南大别山 0.451 3 0.454 6 0.454 6 0.003 3
鸡公山 0.677 0 0.677 0 0.677 0
连康山 0.260 5 0.261 1 0.295 6 0.000 6 0.034 5
小秦岭 0.931 8 1.009 4 1.009 4 0.077 6
平均 0.295 4 0.309 0 0.316 1 0.013 6 0.007 1
内陆湿地 丹江湿地 2.046 3 1.846 5 1.846 5 -0.199 8
河南黄河湿地 3.540 0 3.574 9 3.499 3 0.034 9 -0.075 6
新乡黄河湿地鸟类 4.735 0 4.730 5 4.730 5 -0.004 5
平均 3.048 8 2.969 4 2.940 9 -0.079 4 -0.028 5
野生动物 董寨鸟类 1.729 0 1.732 0 1.732 0 0.003 0
太行山猕猴 0.445 5 0.459 3 0.460 8 0.013 8 0.001 5
平均 1.022 4 1.031 3 1.032 1 0.008 9 0.000 8
古生物遗迹 南阳恐龙蛋化石群 4.701 3 4.728 4 4.728 4 0.027 1
全省平均 2.130 6 2.116 1 2.109 3 -0.014 5 -0.006 8
Tab.8  Evaluation of human interference degree in national nature reserve during 2016—2018
[1] 徐网谷, 秦卫华, 刘晓曼, 等. 中国国家级自然保护区人类活动分布现状[J]. 生态与农村环境学报, 2015, 31(6):802-807.
[1] Xu W G, Qin W H, Liu X M, et al. Status quo of distribution of human activities in the national nature reserves[J]. Journal of Ecology and Rural Environment, 2015, 31(6):802-807.
[2] 刘晓曼, 付卓, 闻瑞红, 等. 中国国家级自然保护区人类活动及变化特征[J]. 地理研究, 2020, 39(10):2391-2402.
doi: 10.11821/dlyj020200458
[2] Liu X M, Fu Z, Wen R H, et al. Characteristics of human activities and the spatio-temporal changes of national nature reserves in China[J]. Geographical Research, 2020, 39(10):2391-2402.
doi: 10.11821/dlyj020200458
[3] 曹巍, 黄麟, 肖桐, 等. 人类活动对中国国家级自然保护区生态系统的影响[J]. 生态学报, 2019, 39(4):1338-1350.
[3] Cao W, Huang L, Xiao T, et al. Effects of human activities on the ecosystems of China’s national nature reserves[J]. Acta Ecologica Sinica, 2019, 39(4):1338-1350.
[4] 张飞, 张耀民, 江东, 等. 自然保护区建设项目生态环境影响评价[J]. 北京测绘, 2019, 33(2):138-143.
[4] Zhang F, Zhang Y M, Jiang D, et al. Ecological environment impact assessment of nature reserve construction projects[J]. Beijing Surveying and Mapping, 2019, 33(2):138-143.
[5] 黄贤峰, 杨永菊, 武艺, 等. 1990—2017年喀斯特自然保护区土地利用变化对生境质量的影响[J]. 水土保持通报, 2018, 38(6):345-351.
[5] Huang X F, Yang Y J, Wu Y, et al. Land use change and its impact on Habitat Quality in Karst nature reserve from 1990 to 2017[J]. Bulletin of Soil and Water Conservation, 2018, 38(6):345-351.
[6] 幸赞品, 颜长珍, 冯坤. 1975—2015年甘肃省白龙江流域自然保护区生态系统服务价值及其时空差异[J]. 中国沙漠, 2019, 39(3):172-180.
[6] Xing Z P, Yan C Z, Feng K. Spatial and temporal variation of ecosystem service value in the nature reserves of Bailongjiang watershed from 1975 to 2015[J]. Journal of Desert Research, 2019, 39(3):172-180.
[7] 蒋斋, 孙小银, 刘飞, 等. 1975—2015年南四湖自然保护区生态系统服务价值时空变化分析[J]. 生态科学, 2019, 38(3):201-210.
[7] Jiang Z, Sun X Y, Liu F, et al. Spatio-temporal variation of ecosystem service values in Nansihu Lake reserve during 1975—2015[J]. Ecological Science, 2019, 38(3):201-210.
[8] 马超, 王夏冰, 刘畅. 41年罗山自然保护区人地关系的演进与孤立生境的形成[J]. 生态学报, 2019, 39(20):7709-7721.
[8] Ma C, Wang X B, Liu C. Evolution of human-land relationship and its ecological isolation in Luoshan nature reserve[J]. Acta Ecologica Sinica, 2019, 39(20):7709-7721.
[9] 杜军, 牛晓俊, 袁雷, 等. 1971—2017年羌塘国家级自然保护区陆地生态环境变化[J]. 冰川冻土, 2020, 42(3):1017-1026.
doi: 10.7522/j.issn.1000-0240.2020.0074
[9] Du J, Niu X J, Yuan L, et al. Climatic and environmental features in Changtang national nature reserve during 1971—2017[J]. Journal of Glaciology and Geocryology, 2020, 42(3):1017-1026.
[10] 魏凌伟, 兰思仁, 熊慧锦, 等. 1988—2018年武夷山国家自然保护区生境质量评价[J]. 西南林业大学学报(自然科学), 2021, 41(4):1-11.
[10] Wei L W, Lan S R, Xiong H J, et al. Habitat quality evaluation of Wuyi Mountain national nature reserve in 1988—2018 based on remote sensing data[J]. Journal of Southwest Forestry University, 2021, 41(4):1-11.
[11] 王耕, 常畅, 韩冬雪, 等. 老铁山自然保护区景观格局与生境质量时空变化[J]. 生态学报, 2020, 40(6):1910-1922.
[11] Wang G, Chang C, Han D X, et al. Temporal-spatial changes of landscape pattern and habitat quality in Laotieshan nature reserve[J]. Acta Ecologica Sinica, 2020, 40(6) :1910-1922.
[12] 张明莎, 刘乾飞, 王敬文, 等. 1992—2018年轿子山自然保护区人为活动遥感监测[J]. 生态与农村环境学报, 2020, 36(9):1097-1105.
[12] Zhang M S, Liu Q F, Wang J W, et al. Monitoring human activities in Jiaozi Mountain nature reserve based on remote sensing during 1992—2018[J]. Journal of Ecology and Rural Environment, 2020, 36(9):1097-1105.
[13] 何柏华, 张晓勉, 薛晓坡, 等. 自然保护区人类活动遥感监测效果分析——以广西为例[J]. 安徽林业科技, 2020, 46(3):3-8.
[13] He B H, Zhang X M, Xue X P, et al. Effect analysis on the remote sensing monitoring of human activities in nature reserves:A case study of Guangxi[J]. Anhui Forestry Science and Technology, 2020, 46(3):3-8.
[14] 张洪云, 臧淑英, 张玉红, 等. 人类土地利用活动对自然保护区影响研究:以黑龙江省为例[J]. 环境科学与技术, 2015, 38(11):271-276.
[14] Zhang H Y, Zang S Y, Zhang Y H, et al. Research on the impact of land use activities on nature reserves: Heilongjiang Province as a case[J]. Environmental Science and Technology, 2015, 38(11):271-276.
[15] 吴东辉, 李玉龙, 江东, 等. 可可西里国家级自然保护区人类活动干扰状况遥感监测研究[J]. 甘肃科学学报, 2015, 27(4):37-44.
[15] Wu D H, Li Y L, Jiang D, et al. Research of remote sensing monitoring on human activity impacts on Hoh Xil national nature reserve[J]. Journal of Gansu Sciences, 2015, 27(4):37-44.
[16] 宋拥军, 吴静, 王慧敏, 等. 基于地理国情的自然保护区人类活动监测研究[J]. 地理空间信息, 2020, 18(10):5-10.
[16] Song Y J, Wu J, Wang H M, et al. Research on human activities monitoring in nature reserves based on geographical conditions monitoring[J]. Geospatial Information, 2020, 18(10):5-10.
[17] 胡苏李扬, 李辉, 顾延生, 等. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1):221-230.doi:10.6046/gtzyyg.2020100.
doi: 10.6046/gtzyyg.2020100
[17] Hu S L Y, Li H, Gu Y S, et al. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high reso-lution remote sensing images: Constraints from the multi - source and long - term remote sensing information[J]. Remote Sensing for Land and Resources, 2021, 33(1):221-230.doi:10.6046/gtzyyg.2020100.
doi: 10.6046/gtzyyg.2020100
[18] 石冠红, 李培学, 哈登龙, 等. 鸡公山自然保护区森林生态系统服务功能价值评估[J]. 安徽农业科学, 2013, 41(2):652-654.
[18] Shi G H, Li P X, Ha D L, et al. Evaluation of forest ecosystem services in Jigongshan national nature reserve[J]. Journal of Anhui Agricutural Sciences, 2013, 41(2):652-654.
[19] 李冬林, 王宝松, 阮宏华, 等. 河南小秦岭自然保护区生态评价[J]. 安徽农业大学学报, 2007, 34(1):97-102.
[19] Li D L, Wang B S, Ruan H H, et al. Ecological evaluation of the forest ecosystems in Henan Xiaoqinling nature reserve[J]. Journal of Anhui Agricultural University, 2007, 34(1):97-102.
[20] 徐文茜, 汤茜, 丁圣彦. 河南新乡黄河湿地鸟类国家级自然保护区景观格局动态分析[J]. 湿地科学, 2016, 14(2):235-241.
[20] Xu W Q, Tang Q, Ding S Y. Landscape pattern dynamic of Xinxiang Yellow River wetland bird national nature reserve,Henan Province[J]. Wetland Science, 2016, 14(2):235-241.
[21] 王娟, 王志红, 初娜, 等. 基于RS和GIS的河南国家级自然保护区人类活动与地貌特征研究[J]. 矿产勘查, 2021, 12(7):1670-1678.
[21] Wang J, Wang Z H, Chu N, et al. Research on human activities and geomorphic characteristics of Henan national nature reserve based on RS and GIS[J]. Mineral Exploration, 2021, 12(7):1670-1678.
[1] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[2] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[3] XIN Rongfang, LI Zongren, ZHANG Kun, ZHANG Xing, HUANG Li, LIU Baoshan. Remote sensing monitoring of the dynamic changes in geologic hazards in the Huangshui River basin of Qinghai Province[J]. Remote Sensing for Natural Resources, 2022, 34(4): 254-261.
[4] LI Xingyou, ZHANG Fei, WANG Zheng. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4): 11-21.
[5] TONG Jing, YANG Jinzhong, DU Xin, DU Xiaomin, LI Chunbo, AN Na. Remote sensing-based monitoring of the treatment and redevelopment of the brownfields: A case study of brownfields in the risk control and rehabilitation list of Zhejiang Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 235-239.
[6] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[7] WEI Haohan, XU Renjie, YANG Qiang, ZHOU Quanping. Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 130-137.
[8] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[9] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[10] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[11] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[12] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[13] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[14] Hongxia LUO, Shengpei DAI, Maofen LI, Yuping LI, Qian ZHENG, Yingying HU. Relative roles of climate changes and human activities in vegetation variables in Hainan Island[J]. Remote Sensing for Land & Resources, 2020, 32(1): 154-161.
[15] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech