Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 49-56     DOI: 10.6046/zrzyyg.2022045
|
A remote sensing classification method for cyanobacteria using Bayesian optimization algorithm
TIAN Chen1(), ZHANG Jinlong1, JIN Yirong1, DONG Shiyuan2(), WANG Bin2, ZHANG Naixiang2
1. Suzhou Water Conservancy and Water Information Dispatching Command Center, Suzhou 215011, China
2. Suzhou Land Think Software Technology Company Limited of Chinese Academy of Science, Suzhou 215163, China
Download: PDF(7416 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With 14 types of multi-feature information, such as spectrum, index, and texture, of remote sensing images from satellite Sentinel-2 as input and using the Bayesian optimization algorithm, this study designed the BO-XGBoost method used to automatically obtain the optimal hyperparameter combination. This method was successfully applied to the information extraction of cyanobacteria in Yangcheng Lake in 2021. The results show that: ① The optimal hyperparameter combination was obtained using the Bayesian optimization algorithm, and then the BO-XGBoost cyanobacteria classification model was established through obtaining. The training results performed well on the test and training sets, with an accuracy rate of up to 96.07%; ② The BO-XGBoost method was applied to the images used in the sample set. The comparison between the cyanobacteria identification results and the manual interpretation results shows that the two methods yielded roughly the same spatial distribution of cyanobacteria, with a lowest intersection over union (IoU) of 41.31%; ③ To evaluate the applicability of the BO-XGBoost method in other periods, images of other periods were selected for the information extraction of cyanobacteria. As a result, both BO-XGBoost and manual interpretation also yielded roughly the same spatial distribution of cyanobacteria, with a lowest IoU of 43.85%.

Keywords Bayesian optimization      BO-XGBoost      multi-feature      cyanobacteria      Sentinel-2     
ZTFLH:  TP79  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chen TIAN
Jinlong ZHANG
Yirong JIN
Shiyuan DONG
Bin WANG
Naixiang ZHANG
Cite this article:   
Chen TIAN,Jinlong ZHANG,Yirong JIN, et al. A remote sensing classification method for cyanobacteria using Bayesian optimization algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(1): 49-56.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022045     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/49
Fig.1  Yangcheng Lake water area
序号 日期 云层覆盖率/% 载荷类型
1 6月22日 0 S2B星
2 7月7日 0.85 S2A星
3 7月12日 0 S2B星
4 8月26日 0 S2A星
5 8月31日 0 S2B星
6 9月30日 2.48 S2B星
7 10月5日 0 S2A星
8 10月30日 1.26 S2B星
Tab.1  Yangcheng Lake image transboundary time
Fig.2  Multi-feature distribution map
Fig.3  Data display on August 26, 2021
Fig.4  Bayesian optimization iteration case
变量 含义 取值范围 步长 最优值
max_depth 子模型最大深度 [5, 15] 1 4
learning_rate 学习率 0.001, 0.01, 0.1, 1, 10 0.1
n_estimators 子模型数量 [10, 300] 10 35
subsample 随机采样的比例 (0, 1) 0.1 0.5
colsample_bytree 特征占比 (0, 1] 0.1 0.4
min_child_weight 最小叶节点样本权重和 [1, 10] 1 4
Tab.2  XGBoost optimal hyperparameter combination
评价指标 训练集 测试集
蓝藻 水体 其他植被 蓝藻 水体 其他植被
精确率/% 98.61 98.86 99.88 98.63 96.07 99.32 99.46 98.11
召回率/% 97.82 99.57 99.77 98.97 97.86 98.66 98.93 97.33
F1/% 98.22 99.21 99.82 98.80 96.96 98.99 99.19 97.72
Kappa 0.986 7 0.975 6
Tab.3  Classification Model Accuracy Evaluation
Fig.5  Comparison of cyanobacterial identification results participating in the construction of the sample set in 2021
Fig.6  Comparison of details of cyanobacteria identification results on August 26
日期 IoU/% BO-XGBoost
/km2
人工解译
/km2
7月7日 55.46 4.289 2 2.743 6
8月26日 41.53 16.521 6 11.235 8
9月30日 41.31 2.305 1 2.897 4
10月30日 43.28 0.896 8 0.812 4
Tab.4  Cyanobacteria extraction area and IoU evaluation index
日期 IoU/% BO-XGBoost
/km2
人工解译
/km2
6月22日 44.75 4.073 8 3.167 1
7月12日 43.85 3.465 3 1.671 9
8月31日 44.01 1.486 6 1.642 2
10月5日 50.22 0.585 4 0.678 4
Tab.5  Cyanobacteria extraction area and IoU evaluation index
Fig.7  Comparison of cyanobacterial identification results that did not participate in the construction of the sample set in 2021
[1] 胡智华, 林妙丽, 李港, 等. 城市闸控河流浮游植物群落结构特征及影响因素[J]. 环境科学学报, 2021, 41(9):3631-3640.
[1] Hu Z H, Lin M L, Li G, et al. Phytoplankton community characteristics and influencing factors of the urban gate-controlled rivers[J]. Acta Scientiae Circumstantiae, 2021, 41(9):3631-3640.
[2] 岩腊, 龙笛, 白亮亮, 等. 基于多源信息的水资源立体监测研究综述[J]. 遥感学报, 2020, 24(7):787-803.
[2] Yan L, Long D, Bai L L, et al. A review on water resources stereoscopic monitoring systems based on multisource data[J]. National Remote Sensing Bulletin, 2020, 24(7):787-803.
[3] 谢勇, 李凯云, 李家国, 等. Sentinel-2A影像珠海市污染水体识别[J]. 遥感信息, 2021, 36(3):1-9.
[3] Xie Y, Li K Y, Li J G, et al. Water pollution identification in Zhuhai City based on Sentinel-2A imagery[J]. Remote Sensing Information, 2021, 36(3):1-9.
[4] 邱亚会, 卢剑波. 浒苔遥感监测研究进展[J]. 生态学报, 2015, 35(15):4977-4985.
[4] Qiu Y H, Lu J B. Advances in the monitoring of Enteromorpha prolifera using remote sensing[J]. Acta Ecologica Sinica, 2015, 35(15):4977-4985.
[5] Xing Q G, Hu C M. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data:Application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178:113-126.
doi: 10.1016/j.rse.2016.02.065 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716300840
[6] 陈春波, 周宝同, 田永中, 等. 环境一号卫星多光谱数据在巢湖动态监测中的应用[J]. 中国环境监测, 2014, 30(1):200-204.
[6] Chen C B, Zhou B T, Tian Y Z, et al. Application of environmental satellite HJ1A/1B-CCD data for Cyanobacteria dynamic monitoring in Chaohu Lake[J]. Environmental Monitoring of China, 2014, 30(1):200-204.
[7] Hu C. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
doi: 10.1016/j.rse.2009.05.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709001710
[8] Fang C, Song K, Shang Y, et al. Remote sensing of harmful algal blooms variability for Lake Hulun using adjusted FAI (AFAI) Algorithm[J]. Journal of Environmental Informatics, 2018:54-68.
[9] Otukei J R, Blaschke T. Land cover change assessment using decision trees,support vector machines and maximum likelihood classification algorithms[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12:27-31.
doi: 10.1016/j.jag.2009.11.002
[10] 李旭青, 刘世盟, 李龙, 等. 基于RF算法优选多时相特征的冬小麦空间分布自动解译[J]. 农业机械学报, 2019, 50(6):218-225.
[10] Li X Q, Liu S M, Li L, et al. Automatic interpretation of spatial distribution of winter wheat based on random forest algorithm to optimize multi-temporal features[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6):218-225.
[11] 李苓苓, 潘耀忠, 张锦水, 等. 支持向量机与分类后验概率空间变化向量分析法相结合的冬小麦种植面积测量方法[J]. 农业工程学报, 2010, 26(9):210-217.
[11] Li L L, Pan Y Z, Zhang J S, et al. Method of winter wheat planting area estimation based on support vector machine and post-classification changed vector analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9):210-217.
[12] 赵莲, 张锦水, 胡潭高, 等. 变端元混合像元分解冬小麦种植面积测量方法[J]. 国土资源遥感, 2011, 23(1):66-72.doi:10.6046/gtzyyg.2011.01.13.
doi: 10.6046/gtzyyg.2011.01.13
[12] Zhao L, Zhang J S, Hu T G, et al. The application of the dynamic endmember linear spectral unmixing model to winter wheat area estimation[J]. Remote Sensing for Land and Resources, 2011, 23(1):66-72.doi:10.6046/gtzyyg.2011.01.13.
doi: 10.6046/gtzyyg.2011.01.13
[13] 王怡人, 王胜强, 喻樾, 等. 一种提取南黄海浒苔的自适应阈值遥感算法[J]. 遥感信息, 2021, 36(2):120-129.
[13] Wang Y R, Wang S Q, Yu Y, et al. An adaptive threshold algorithm for detecting ulva prolifera in southern Yellow Sea by remote sensing[J]. Remote Sensing Information, 2021, 36(2):120-129.
[14] Chen T W, Guestrin C. XGBoost:A scalable tree boosting system[C]// 22nd ACM SIGKDD International Conference.ACM, 2016.
[15] 卢雪梅, 苏华. 基于OLCI数据的福建近海悬浮物浓度遥感反演[J]. 环境科学学报, 2020, 40(8):2819-2827.
[15] Lu X M, Su H. Retrieving total suspended matter concentration in Fujian coastal waters using OLCI data[J]. Acta Scientiae Circumstantiae, 2020, 40(8):2819-2827.
[16] 黄宇, 潘励. 基于显著性图像与纹理特征的遥感影像云检测[J]. 测绘地理信息, 2021, 46(2):16-19.
[16] Huang Y, Pan L. Cloud detection of remote sensing images based on significance maps and texture features[J]. Journal of Geomatics, 2021, 46(2):16-19.
[17] 徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报, 2021, 25(3):737-752.
[17] Xu Y, Zhen J N, Jiang X P, et al. Mangrove species classification with UAV-based remote sensing data and XGBoost[J]. National Remote Sensing Bulletin, 2021, 25(3):737-752.
[18] 李鹏, 冯存前, 许旭光, 等. 一种利用贝叶斯优化的弹道目标微动分类网络[J]. 西安电子科技大学学报, 2021, 48(5):139-148.
[18] Li P, Feng C Q, Xu X G, et al. Ballistic target fretting classification network based on Bayesian optimization[J]. Journal of Xidian University, 2021, 48(5):139-148.
[19] 孙淑文, 夏霆, 杨金艳, 等. 苏州湖泊水源地浮游植物群落特征及营养状况分析[J]. 中国农村水利水电, 2020(8):51-55.
[19] Sun S W, Xia T, Yang J Y, et al. An analysis of the phytoplankton community characteristics and nutrition status in lake-type drinking water sources in Suzhou[J]. China Rural Water and Hydropower, 2020(8):51-55.
[20] 刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008
[20] Liu R Q, Li J L, Sun C, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008
[21] Guo X J, Zhang C C, Luo W R, et al. Urban impervious surface extraction based on multi-features and random forest[J]. IEEE Access, 2020, 8:226609-226623.
doi: 10.1109/Access.6287639 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
[22] Bergstra J, Bardenet R, Bengio Y, et al. Algorithms for hyper-parameter optimization[J]. Advances in Neural Information Processing Systems, 2011, 24(24):2546-2554.
[23] Tanaka R, Iwata H. Bayesian optimization for genomic selection:A method for discovering the best genotype among a large number of candidates[J]. Theoretical and Applied Genetics, 2017, 131(1):1-13.
doi: 10.1007/s00122-017-2954-9 url: http://link.springer.com/10.1007/s00122-017-2954-9
[24] Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2):69-106.
pmid: 15112367
[25] Colopy G W, Roberts S J, Clifton D A. Bayesian optimization of personalized models for patient vital-sign monitoring[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(2):301.
doi: 10.1109/JBHI.2017.2751509 pmid: 29505398
[26] 陈云, 戴锦芳. 基于遥感数据的太湖蓝藻水华信息识别方法[J]. 湖泊科学, 2008, 20(2):179-183.
[26] Chen Y, Dai J F. Extraction methods of cyanobacteria bloom in Lake Taihu based on RS data[J]. Journal of Lake Science, 2008, 20(2):179-183.
[27] 张东彦, 尹勋, 佘宝, 等. 多源卫星遥感数据监测巢湖蓝藻水华爆发研究[J]. 红外与激光工程, 2019, 48(7):303-314.
[27] Zhang D Y, Yin X, She B, et al. Using multi-source satellite imagery data to monitor cyanobacterial blooms of Chaohu Lake[J]. Infrared and Laser Engineering, 2019, 48(7):303-314.
[28] 刘海秋, 任恒奎, 牛鑫鑫, 等. 基于Sentinel-2遥感影像的巢湖蓝藻水华提取方法研究[J]. 生态环境学报, 2021, 30(1):146-155.
doi: 10.16258/j.cnki.1674-5906.2021.01.017
[28] Liu H Q, Ren H K, Niu X X, et al. Extraction of cyanobacteria bloom in Chaohu Lake based on Sentinel-2 remote sensing images[J]. Ecology and Environmental Sciences, 2021, 30(1):146-155.
[1] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[2] HOU Yingzhuo, JI Ling, XING Qianguo, SHENG Dezhi. Satellite remote sensing-assisted comparative monitoring of dynamic characteristics of macroalgae aquaculture in Weihai City, Shandong Province, China[J]. Remote Sensing for Natural Resources, 2023, 35(2): 34-41.
[3] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[4] LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
[5] ZHAO Yi, XU Jianhui, ZHONG Kaiwen, WANG Yunpeng, HU Hongda, WU Pinghao. Impervious surface extraction based on Sentinel-2A and Landsat8[J]. Remote Sensing for Land & Resources, 2021, 33(2): 40-47.
[6] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[7] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[8] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[9] Zhili LIU, Qibin ZHANG, Depeng YUE, Yuguang HAO, Kai SU. Extraction of urban built-up areas based on Sentinel-2Aand NPP-VIIRS nighttime light data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 227-234.
[10] Dazhao WANG, Simeng WANG, Chang HUANG. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land & Resources, 2019, 31(3): 157-165.
[11] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[12] Liuqing WU, Xiangyun HU. Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature[J]. Remote Sensing for Land & Resources, 2019, 31(1): 71-78.
[13] Bin YANG, Dan LI, Guisheng GAO, Cai CHEN, Lei WANG. Processing analysis of Sentinel-2A data and application to arid valleys extraction[J]. Remote Sensing for Land & Resources, 2018, 30(3): 128-135.
[14] ZHANG Yue, XIAO Yu, CHANG Jingjing, LIU Jian, WANG Yaqiong, HE Chunyan, HE Bing. Effects of atmospheric correction on extracting cyanobacteria bloom information based on remote sensing indices[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 7-12.
[15] DONG Li-Xin, WU Bing-Fang, MENG Li-Xia, YUAN Chao, ZHANG Xi-Wang, WEI Yan-Chang. THE EXTRACTION OF LAND-USE/COVER INFORMATION IN COMBINATION  WITH UPSCALING METHODS AND OBJECT MULTI-FEATURES[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(4): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech