Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (1) : 86-94     DOI: 10.6046/zrzyyg.2022489
|
A method for sugarcane information extraction based on multi-feature optimal selection of Sentinel-1/2 image data
LU Xianjian(), ZHANG Huanling, YAN Hongbo(), LI Zhenbao, GUO Ziyang
College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
Download: PDF(12067 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The integration of multi-source remote sensing images and multi-feature parameters is effective in the accurate identification of target ground objects. However, excess feature parameters can cause data redundancy, reducing classification accuracy. Focusing on a sugarcane planting area with Karst landforms, this study extracted the spectral, index, texture, topographic, and polarization features of the ground objects in the study area from Sentinel-1/2 images and SRTM digital elevation data. The index features involved the red edge index calculated based on the red-edge band, which was scarce in data derived from remote sensing sensors, and the texture features included the Radar image textures. In the experiment, six schemes were designed to explore the effects of different image features and the random forest-based optimal feature association on sugarcane information extraction. The results show that for the classification of ground objects in the study area using spectral features combined with other feature types, the importance of the feature types ranked in descending order of spectral features, index features, texture features, topographic features, and polarization features. Among the six schemes, the scheme based on the random forest algorithm, integrating different feature variables, yielded the optimal information extraction effect for sugarcane, with both user and producer accuracy higher than 97%, overall accuracy of 95.49%, and a Kappa coefficient of 0.94.

Keywords multi-source remote sensing      accurate identification      random forest      optimal feature selection      red-edge band      polarization feature     
ZTFLH:  TP79  
Issue Date: 13 March 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xianjian LU
Huanling ZHANG
Hongbo YAN
Zhenbao LI
Ziyang GUO
Cite this article:   
Xianjian LU,Huanling ZHANG,Hongbo YAN, et al. A method for sugarcane information extraction based on multi-feature optimal selection of Sentinel-1/2 image data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 86-94.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022489     OR     https://www.gtzyyg.com/EN/Y2024/V36/I1/86
Fig.1  Geographical map of the study area
地物
类别
建设
用地
林地 水域 甘蔗 水稻 香蕉 裸地
数量 576 762 513 1 012 218 236 242
Tab.1  
Fig.2  Technique flow chart
特征
类型
变量名称 变量符号 变量描述/公式
光谱
特征
波段 B2,B3,B4,B5,B6,B7,B8,B8A,B11,B12 蓝、绿、红、红边、近红外、短波红外
指数
特征
归一化植被指数 NDVI (B8-B4)/(B8+B4)
增强植被指数 EVI 2.5(B8A-B4)/(B8A+6B4-
7.5B2+1)
归一化水体指数 NDWI (B3-B8)/(B3+B8)
叶绿素指数—红边 CIre B7/B5-1
归一化差异红色边缘指数 NDre1
NDre2
(B6-B5)/(B6+B5)
(B7-B5)/(B7+B5)
红边归一化差值植被指数 NDVIre1
NDVIre2
NDVIre3
(B8A-B5)/(B8A+B5)
(B8A-B6)/(B8A+B6)
(B8A-B7)/(B8A+B7)
纹理
特征
二阶矩 B8_asm,VV_asm,VH_asm
对比度 B8_cont,VV_cont,VH_cont
相关性 B8_corr,VV_corr,VH_corr
方差 B8_var,VV_var,VH_var
逆差距 B8_idm,VV_idm,VH_idm
B8_ent,VV_ent,VH_ent
极化
特征
VV极化后向散射系数 δ V V
VH极化后向散射系数 δ V H
地形
特征
高程 DEM
坡度 Slope
Tab.2  Characteristic variable
Fig.3  Distinguishability of ground objects under different image features
Fig.4  Importance of characteristic band
Fig.5  Sugarcane extraction maps of different schemes
地物类型 方案1 方案2 方案3 方案4 方案5 方案6
UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/%
香蕉 86.36 80.28 96.96 82.05 93.24 76.66 92.98 79.10 94.52 88.46 94.44 98.55
水稻 98.38 88.40 98.55 94.44 97.22 94.59 98.24 93.33 98.11 91.22 100.00 96.15
甘蔗 90.15 93.42 90.54 95.80 91.45 97.96 91.88 96.94 94.75 97.15 97.59 98.61
裸地 86.11 93.93 95.77 94.44 97.05 91.66 96.47 88.17 93.75 93.75 92.50 97.36
林地 83.91 82.47 80.45 86.34 85.65 88.64 86.84 89.59 88.28 88.97 92.48 89.95
水体 97.88 99.28 98.63 97.29 98.61 97.26 98.70 98.06 100.00 97.93 100.00 97.45
建设用地 88.41 86.82 93.82 85.87 92.90 90.00 90.37 88.94 92.46 93.40 91.71 93.25
OA/% 89.53 91.33 92.21 92.27 93.61 95.49
Kappa 0.87 0.89 0.90 0.90 0.92 0.94
Tab.3  Statistics of ground object classification accuracy in sugarcane planting area
地物
类型
香蕉 水稻 甘蔗 裸地 林地 水体 建设
用地
香蕉 76 1 2 0 4 0 1
水稻 0 55 2 0 0 0 1
甘蔗 0 0 286 0 4 0 0
裸地 0 0 0 70 0 0 4
林地 1 0 17 2 210 0 9
水体 0 0 0 0 2 173 1
建设
用地
0 0 0 3 9 0 158
Tab.4  Confusion matrix of scheme 6
Fig.6  Sugarcane extraction local map of scheme 6
[1] 李明, 田洪春, 黄智刚. 我国甘蔗产业发展现状研究[J]. 中国糖料, 2017, 39(1):67-70.
[1] Li M, Tian H C, Huang Z G. Research on the development status of sugarcane industry in China[J]. Sugar Crops of China, 2017, 39(1):67-70.
[2] 谢鑫昌, 杨云川, 田忆, 等. 基于遥感的广西甘蔗种植面积提取及长势监测[J]. 中国生态农业学报(中英文), 2021, 29(2):410-422.
[2] Xie X C, Yang Y C, Tian Y, et al. Sugarcane planting area and growth monitoring based on remote sensing in Guangxi[J]. Chinese Journal of Eco-Agriculture, 2021, 29(2):410-422.
[3] 覃泽林, 谢国雪, 李宇翔, 等. 多时相高分一号影像在丘陵地区大宗农作物提取中的应用[J]. 南方农业学报, 2017, 48(1):181-188.
[3] Qin Z L, Xie G X, Li Y X, et al. Application of multi-temporal GF-1 image in extraction of staple crops in hilly region[J]. Journal of Southern Agriculture, 2017, 48(1):181-188.
[4] 杨迎港, 刘培, 张合兵, 等. 基于特征优选随机森林算法的GF-2影像分类[J]. 航天返回与遥感, 2022, 43(2):115-126.
[4] Yang Y G, Liu P, Zhang H B, et al. Research on GF-2 image classification based on feature optimization random forest algorithm[J]. Spacecraft Recovery and Remote Sensing, 2022, 43(2):115-126.
[5] 于飞, 吕争, 隋正伟, 等. 基于特征优选的多时相SAR数据水稻信息提取方法[J]. 农业机械学报, 2023, 54(3):259-265,327.
[5] Yu F, Lyu Z, Sui Z W, et al. Extraction of rice information using multi-temporal SAR data based on feature optimization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3):259-265,327.
[6] 袁星. 基于时间序列Sentinel数据的崇左市甘蔗识别研究[D]. 西安: 西安科技大学, 2019.
[6] Yuan X. Monitoring of sugarcane based on time series of Sentinel data:A case study of Chongzuo,Guangxi[D]. Xi’an: Xi’an University of Science and Technology, 2019.
[7] 王久玲, 黄进良, 王立辉, 等. 面向对象的多时相HJ星影像甘蔗识别方法[J]. 农业工程学报, 2014, 30(11):145-151.
[7] Wang J L, Huang J L, Wang L H, et al. Identification of sugarcane based on object-oriented analysis using time-series HJ CCD data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11):145-151.
[8] Virnodkar S, Pachghare V K, Patil V C, et al. Performance evaluation of RF and SVM for sugarcane classification using Sentinel-2 NDVI time-series[C]//Ponigrahi CR,Pati B,Mohapatra P,et al.Progress in Advanced Computing and Intelligent Engineering.Singapore:Springer,2021:163-174
[9] 王镕, 赵红莉, 蒋云钟, 等. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析[J]. 自然资源遥感, 2021, 33(3):72-79.doi:10.6046/zrzyyg.2020334.
[9] Wang R, Zhao H L, Jiang Y Z, et al. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3):72-79.doi:10.6046/zrzyyg.2020334.
[10] 向海燕, 罗红霞, 刘光鹏, 等. 基于Sentinel-1A极化SAR数据与面向对象方法的山区地表覆被分类[J]. 自然资源学报, 2017, 32(12):2136-2148.
doi: 10.11849/zrzyxb.20161306
[10] Xiang H Y, Luo H X, Liu G P, et al. Land cover classification in mountain areas based on Sentinel-1A polarimetric SAR data and object oriented method[J]. Journal of Natural Resources, 2017, 32(12):2136-2148.
[11] 张梦茹, 冯志立. 特征优选下的GF-6影像土地利用分类方法研究[J]. 河南科技, 2022, 41(11):106-110.
[11] Zhang M R, Feng Z L. Research on GF-6 image land use classification method under feature optimization[J]. Henan Science and Technology, 2022, 41(11):106-110.
[12] 查东平, 蔡海生, 张学玲, 等. 基于多时相Sentinel-1水稻种植范围提取[J]. 自然资源遥感, 2022, 34(3):184-195.doi:10.6046/zrzyyg.2021320.
[12] Zha D P, Cai H S, Zhang X L, et al. Extraction of paddy fields using multi-temporal Sentinel-1 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 184-195.doi:10.6046/zrzyyg.2021320.
[13] 王德军, 姜琦刚, 李远华, 等. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.
[13] Wang D J, Jiang Q G, Li Y H, et al. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land and Resources, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.
[14] 覃泽林, 谢国雪, 李宇翔, 等. 多时相高分一号影像在丘陵地区大宗农作物提取中的应用[J]. 南方农业学报, 2017, 48(1):181-188.
[14] Qin Z L, Li G X, Xie Y X, et al. Application of multi-temporal GF-1 image in extraction of staple crops in hilly region[J]. Journal of Southern Agriculture, 2017, 48(1):181-188.
[15] 王小燕, 吕争, 原征, 等. 光学遥感卫星红边波段应用综述[J]. 卫星应用, 2023(2):48-53.
[15] Wang X Y, Lyu Z, Yuan Z, et al. Review on the application of red edge band optical remote sensing satellite red edge band[J]. Satellite Application, 2023(2):48-53.
[16] 赵诣, 蒋弥. 极化SAR参数优化与光学波谱相结合的面向对象土地覆盖分类[J]. 测绘学报, 2019, 48(5):609-617.
doi: 10.11947/j.AGCS.2019.20170746
[16] Zhao Y, Jiang M. Integration of SAR polarimetric parameters and multi-spectral data for object based land cover classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):609-617.
[17] 郭交, 朱琳, 靳标. 基于Sentinel-1和Sentinel-2数据融合的农作物分类[J]. 农业机械学报, 2018, 49(4):192-198.
[17] Guo J, Zhu L, Jin B. Crop classification based on data fusion of Sentinel-1 and Sentinel-2[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4):192-198.
[18] 张昊, 高小红, 史飞飞, 等. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4):144-154.doi:10.6046/zrzyyg.2021385.
[18] Zhang H, Gao X H, Shi F F, et al. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4):144-154.doi:10.6046/zrzyyg.2021385.
[19] 刘春亭, 冯权泷, 金鼎坚, 等. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3):253-261.doi:10.6046/zrzyyg.2020310
[19] Liu C T, Feng Q L, Jin D J, et al. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3):253-261.doi:10.6046/zrzyyg.2020310
[20] Wang Y Y, Fang S H, Zhao L L, et al. Parcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108:102720.
doi: 10.1016/j.jag.2022.102720 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243422000460
[21] 王利花, 金辉虎, 王晨丞, 等. 基于合成孔径雷达的农作物后向散射特性及纹理信息分析——以吉林省农安县为例[J]. 中国生态农业学报(中英文), 2019, 27(9):1385-1393.
[21] Wang L H, Jin H H, Wang C C, et al. Backscattering characteristics and texture information analysis of typical crops based on synthetic aperture Radar:A case study of Nong’an County,Jilin Province[J]. Chinese Journal of Eco-Agriculture, 2019, 27(9):1385-1393.
[22] 翟鹏飞, 李世华, 胡月明. 协同光学与雷达遥感数据的面向对象土地覆盖变化检测[J]. 农业工程学报, 2021, 37(23):216-224.
[22] Zhai P F, Li S H, Hu Y M. Object-oriented land cover change detection combining optical and Radar remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23):216-224.
[23] Breiman L. Random forests[J]Machine Learning. 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 url: http://link.springer.com/10.1023/A:1010933404324
[24] 李恒凯, 王利娟, 肖松松. 基于多源数据的南方丘陵山地土地利用随机森林分类[J]. 农业工程学报, 2021, 37(7):244-251.
[24] Li H K, Wang L J, Xiao S S. Random forest classification of land use in hilly and mountaineous areas of Southern China using multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7):244-251.
[25] 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
[25] Zhang L, Gong Z N, Wang Q W, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images[J]. Journal of Remote Sensing, 2019, 23(2):313-326.
[26] Stehman S V. Selecting and interpreting measures of thematic classification accuracy[J]. Remote Sensing of Environment, 1997, 62(1):77-89.
doi: 10.1016/S0034-4257(97)00083-7 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425797000837
[1] JIANG Ruirui, GAN Fuping, GUO Yi, YAN Bokun. Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 1-13.
[2] LIU Meiyan, NIE Sheng, WANG Cheng, XI Xiaohuan, CHENG Feng, FENG Baokun. Forest stock volume inversion based on ICESat-2 and Sentinel-2A data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 210-216.
[3] WANG Yumiao, LI Sheng, DONG Chunyu, YANG Gang. Remote sensing information extraction for mangrove forests based on multi-feature parameters: A case study of Guangdong Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 95-102.
[4] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[5] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[6] DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
[7] ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
[8] HE Suling, HE Zenghong, PAN Jiya, WANG Jinliang. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4): 201-213.
[9] CHEN Jian, LI Hu, LIU Yufeng, CHANG Zhu, HAN Weijie, LIU Saisai. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
[10] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[11] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[12] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[13] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[14] WU Yuxin, WANG Juanle, HAN Baomin, YAN Xinrong. Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1): 180-188.
[15] XU Qingyun, LI Ying, TAN Jing, ZHANG Zhe. Information extraction method of mangrove forests based on GF-6 data[J]. Remote Sensing for Natural Resources, 2023, 35(1): 41-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech