Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data
JIANG Ruirui1,2,3(), GAN Fuping1(), GUO Yi1, YAN Bokun1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 2. Chinese Academy of Geological Sciences, China University of Geosciences(Beijing), Beijing 100083, China 3. Chinese Academy of Geological Sciences, Beijing 100083, China
Soil moisture is closely associated with global climate change, the carbon cycle, and the water cycle, as well as agricultural production and ecological conservation and restoration. The detection of soil moisture has shifted from ground survey to remote sensing detection, achieving global- and regional-scale survey and monitoring. Given differences in data spectrum segments, radiative transfer mechanisms, and inversion algorithms, it is necessary to comprehensively analyze the mechanisms, advantages, and limitations of algorithms, with the purpose of laying a foundation for accuracy and algorithm improvement. From the aspects of optical remote sensing, microwave remote sensing, and optic-microwave cooperation, this study systematically analyzed the features and challenges of the following inversion techniques: inversion based on the Ts-VI spatial and Ts-NSSR temporal characteristics of optical remote sensing data, inversion using passive and active microwave data, joint inversion using active and passive microwave data and remote sensing data, and optical-microwave cooperative inversion based on accuracy improvement and spatio-temporal transformation. At present, the joint inversion of soil moisture using multi-source remote sensing data faces the following challenges: ① The data suffer missing and spatio-temporal mismatching; ② Different data sources exhibit varying degrees of surface penetration; ③ The joint inversion model relies on empirical parameters and numerous auxiliary parameters. These challenges can be addressed with the improvement in the satellite monitoring network, the increase in the surface detection depths of data sources, the clarification of the physical mechanisms of joint inversion, and the establishment of spatio-temporal continuous datasets of auxiliary parameters.
Ruirui JIANG,Fuping GAN,Yi GUO, et al. Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data[J]. Remote Sensing for Natural Resources,
2024, 36(1): 1-13.
Li M, Sun H Q, Su Z C. Research progress in dry/wet climate variation in Northwest China[J]. Geographical Research, 2021, 40(4):1180-1194.
doi: 10.11821/dlyj020200328
Chen H S, Shao M A. Review on hillslope soil water movement and transformation mechanism on the loess plateau[J]. Advances in Water Science, 2003, 14(4):413-420.
Wang Y. Simulation of crop soil water availability and drought assessment in the northen Songnen plain[D]. Harbin:Harbin Normal University, 2021.
[5]
Wang C, Fu B, Zhang L, et al. Soil moisture-plant interactions:An ecohydrological review[J]. Journal of Soils and Sediments, 2019, 19(1):1-9.
doi: 10.1007/s11368-018-2167-0
Zhou H. Review of studies on the relationship between soil water movement and energy and their driving forces in the vadose zone of arid regions[J]. Acta Ecologica Sinica, 2019, 39(18):6586-6597.
[7]
David Suits L, Sheahan T C, Sreedeep S, et al. Measuring soil electrical resistivity using a resistivity box and a resistivity probe[J]. Geotechnical Testing Journal, 2004, 27(4):11199.
Lievens H, Reichle R H, Liu Q, et al. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates[J]. Geophysical Research Letters, 2017, 44(12):6145-6153.
doi: 10.1002/2017GL073904
pmid: 29657343
Liu H J, Zhang B, Yang L, et al. Review of soil optical remote sensing[J]. Chinese Journal of Soil Science, 2007, 38(6):1196-1202.
[17]
Maltese A, Capodici F, Corbari C, et al. Critical analysis of the thermal inertia approach to map soil water content under sparse vegetation and changeable sky conditions[C]// Proceeding of SPIE 8531,Remote Sensing for Agriculture,Ecosystems,and Hydrology XIV, 2012, 8531:186-195.
Wu X R, Jin S G, Song Y Z, et al. Progress on soil moisture monitoring with GNSS-R/IR technique[J]. Journal of Geodesy and Geodynamics, 2019, 39(12):1277-1282.
Kong J, Li C B, Wu J. Applicability of remote sensing inversion models for estimating regional soil moisture in Chinese grasslands[J]. Pratacultural Science, 2020, 37(12):2463-2474.
[22]
Zhao W, Labed J, Zhang X, et al. Surface soil moisture estimation from SEVIRI data onboard MSG satellite[C]// 2010 IEEE International Geoscience and Remote Sensing Symposium.Honolulu,HI,USA.IEEE, 2010:3865-3868.
Fan Y G, Han Z C, Ding Z H, et al. Inversion of soil moisture based on MODIS data—Taking Dongying City for example[J]. Shandong Agricultural Sciences, 2016, 48(2):133-137.
Jiao Q, Wang F, Li R, et al. Application of inversion of European remote sensing satellites data to investigation of near-surface soil moisture in loess plateau[J]. Acta Pedologica Sinica, 2014, 51(6):1388-1397.
[25]
Wang W, Huang D, Wang X G, et al. Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index[J]. Hydrology and Earth System Sciences, 2011, 15(5):1699-1712.
doi: 10.5194/hess-15-1699-2011
url: https://hess.copernicus.org/articles/15/1699/2011/
[26]
Shafian S, Maas S J. Improvement of the trapezoid method using raw landsat image digital count data for soil moisture estimation in the Texas (USA) high Plains[J]. Sensors, 2015, 15(1):1925-1944.
doi: 10.3390/s150101925
pmid: 25602267
Bidgoli R D, Koohbanani H, Keshavarzi A, et al. Measurement and zonation of soil surface moisture in arid and semi-arid regions using Landsat 8 images[J]. Arabian Journal of Geosciences, 2020, 13(17):826.
doi: 10.1007/s12517-020-05837-2
[29]
Sanaz S. Estimation of soil moisture status in the Texas high plains using remote sensing[D]. Lubbock: Texas Tech University, 2014.
Cai Q K, Tao L L, Jiang R B, et al. Soil moisture estimation of wheat field based on theoretical dry-wet edge and improved TVDI[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7):202-209.
[32]
Zhang D, Tang R, Zhao W, et al. Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature[J]. Remote Sensing, 2014, 6(4):3170-3187.
doi: 10.3390/rs6043170
url: http://www.mdpi.com/2072-4292/6/4/3170
Gao Q, Peng J, Feng C H, et al. A study on inversion for remote sensing of desert soil moisture based on Landsat8 data[J]. Bulletin of Soil and Water Conservation, 2021, 41(1):125-131,151.
Zhao W, Li Z L, Wu H, et al. Determination of bare surface soil moisture from combined temporal evolution of land surface temperature and net surface shortwave radiation[J]. Hydrological Processes, 2013, 27(19):2825-2833.
doi: 10.1002/hyp.v27.19
url: https://onlinelibrary.wiley.com/toc/10991085/27/19
Leng P, Song X, Duan S B, et al. Preliminary validation of two temporal parameter-based soil moisture retrieval models using a satellite product and in situ soil moisture measurements over the REMEDHUS network[J]. International Journal of Remote Sensing, 2016, 37(24):5902-5917.
doi: 10.1080/01431161.2016.1253896
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1253896
Owe M, de Jeu R, Walker J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1643-1654.
doi: 10.1109/36.942542
url: http://ieeexplore.ieee.org/document/942542/
Qin X D, Pang Z G, Jiang W, et al. Progress and development trend of soil moisture microwave remote sensing retrieval method[J]. Journal of Geo-Information Science, 2021, 23(10):1728-1742.
[46]
Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research:Oceans, 1982, 87(C13):11229-11237.
Bai Y. Evaluation of passive microwave remote sensing soil moisture products over an agricultural area in Northeast China[D]. Changchun: Jilin University, 2018.
Jin M J. Key techniques for microwave remote sensing soil moisture retrieval under forest[D]. Harbin:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences, 2019.
[50]
Wigneron J P, Jackson T J, O’Neill P, et al. Modelling the passive microwave signature from land surfaces:A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment, 2017, 192:238-262.
doi: 10.1016/j.rse.2017.01.024
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717300366
[51]
Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research:Oceans, 1982, 87(C13):11229-11237.
Allen C, Ulaby F. Modelling the polarization dependence of the attenuation in vegetation canopies[C]. Proceedings of the Proceedings of the IGARSS,F,1984.
[57]
Wigneron J P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1697-1707.
doi: 10.1109/36.942548
url: http://ieeexplore.ieee.org/document/942548/
[58]
Choudhury B J, Schmugge T J, Mo T. A parameterization of effective soil temperature for microwave emission[J]. Journal of Geophysical Research:Oceans, 1982, 87(C2):1301-1304.
Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):370-381.
doi: 10.1109/36.134086
url: http://ieeexplore.ieee.org/document/134086/
[62]
戴玉玲. 基于双极化数据的草原地表土壤水分反演研究[D]. 徐州: 中国矿业大学, 2019.
[62]
Dai Y L. Study on inversion of grassland soil moisture based on dual polarization data[D]. Xuzhou: China University of Mining and Technology, 2019.
Shi J, Wang J, Hsu A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1254-1266.
doi: 10.1109/36.628792
url: http://ieeexplore.ieee.org/document/628792/
Deng X D, Wang H Q. Recent advances on algorithms and applications of soil moisture retrieval from microwave remote sensing[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3):289-302.
[66]
Oh Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):596-601.
doi: 10.1109/TGRS.2003.821065
url: http://ieeexplore.ieee.org/document/1273591/
Zhang X, Tang X, Gao X, et al. Soil moisture estimation based on the AIEM for bare agricultural area[C]// IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium.Waikoloa,HI,USA.IEEE, 2020:4723-4726.
Chen K S, Wu T D, Tsang L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1):90-101.
doi: 10.1109/TGRS.2002.807587
url: https://ieeexplore.ieee.org/document/1183697/
Han L, Wang C, Yu T, et al. High-precision soil moisture mapping based on multi-model coupling and background knowledge,over vegetated areas using Chinese GF-3 and GF-1 satellite data[J]. Remote Sensing, 2020, 12(13):2123.
doi: 10.3390/rs12132123
url: https://www.mdpi.com/2072-4292/12/13/2123
[77]
Zribi M, Gorrab A, Baghdadi N, et al. Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):848-852.
doi: 10.1109/LGRS.2013.2279893
url: http://ieeexplore.ieee.org/document/6606863/
[78]
Shen X, Mao K, Qin Q, et al. Bare surface soil moisture estimation using double-angle and dual-polarization L-band radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):3931-3942.
doi: 10.1109/TGRS.2012.2228209
url: http://ieeexplore.ieee.org/document/6471210/
[79]
Zhang L, Meng Q, Yao S, et al. Soil moisture retrieval from the Chinese GF-3 satellite and optical data over agricultural fields[J]. Sensors, 2018, 18(8):2675.
doi: 10.3390/s18082675
url: http://www.mdpi.com/1424-8220/18/8/2675
Wu S L. Study on combined active/passive microwave remote sensing approach for soil moisture retrieval with TRMM data[D]. Beijing: Chinese Academy of Sciences(Institute of Remote Sensing Applications), 2006.
Ma T, Han L, Liu Q M. Inversion of surface soil moisture content of Spanish farmland using modified water cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24):129-135.
Liu S F, Liou Y A, Wang W J, et al. Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6):1260-1268.
doi: 10.1109/TGRS.2002.800277
url: http://ieeexplore.ieee.org/document/1020258/
[91]
Moran M S, Peters-Lidard C D, Watts J M, et al. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models[J]. Canadian Journal of Remote Sensing, 2004, 30(5):805-826.
doi: 10.5589/m04-043
url: http://www.tandfonline.com/doi/abs/10.5589/m04-043
Zhan X, Miller S, Chauhan N, et al. Soil moisture visible/infrared radiometer suite algorithm theoretical basis document[J]. Lanham,Md, 2002.
[94]
Malbéteau Y, Merlin O, Molero B, et al. DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements:Application to SMOS and AMSR-E data in Southeastern Australia[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 45:221-234.
doi: 10.1016/j.jag.2015.10.002
url: https://linkinghub.elsevier.com/retrieve/pii/S0303243415300386
Ling Z W, He L B, Zeng H. Evaluating the performance of the UCLA method for spatially downscaling soil moisture products using three Ts/VI indices[J]. Chinese Journal of Applied Ecology, 2014, 25(2):545-552.
Zhou Z, Zhao S J, Jiang L M. Downscaling methods of passive microwave remote sensing of soil moisture[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(4):479-485.
Song C Y, Wang Y L. A comparison study of FY-3B soil moisture downscaling methods[J]. Journal of Heilongjiang Institute of Technology, 2021, 35(3):13-16,32.
[101]
Xu W, Zhang Z, Long Z, et al. Downscaling SMAP soil moisture products with convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:4051-4062.
doi: 10.1109/JSTARS.2021.3069774
url: https://ieeexplore.ieee.org/document/9390292/