Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (1) : 242-249     DOI: 10.6046/zrzyyg.2022441
|
Sea ice in Bohai Sea:Spatio-temporal distribution and the forcing effects of atmospheric circulation
GUO Yudi1(), WANG Tie1(), CHENG Shanjun1, ZUO Tao2
1. Tianjin Climate Center, Tianjin 300074, China
2. Tianjin Marine Meteorological Center, Tianjin 300074, China
Download: PDF(14382 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Sea ice disasters, significant marine disasters in the Bohai Sea in winter, severely threaten oil exploitation, marine transportation, and fishery. Hence, it is particularly critical to monitor and predict the formation and melting of sea ice. Based on MODIS data, reanalysis grid data, and meteorological observation data from 2001 to 2020, this study derived the daily sea ice area of the Bohai Sea through the inversion of satellite data. Then, this study conducted a statistical analysis of changes in the sea ice area, including inter-annual variations and the variations during the freezing, severe ice, and melting periods in different years with sea ice disasters. Moreover, this study delved into the differences in the atmospheric circulation of the Bohai Sea between years with severe and mild sea ice disasters. The results show that: ① Over the past 20 years, higher sea ice grades in the Bohai Sea corresponded to longer ice periods, and the sea ice area experienced a decrease-increase-decrease process, which was opposite to the changes in accumulated temperature; ② Intra-annual sea ice formation and melting processes exhibited a single peak or multiple peaks, with the multi-peak type corresponding to a longer ice period and large-scale ice-bound time; ③ During the initial ice formation period, the sea ice in the Bohai Sea was primarily distributed in the Liaodong Bay, with the sea ice area in a year with severe sea ice disasters more than twice that in a year with mild sea ice disasters. During the ice period, the sea ice covered almost all three bays, completely covering the three bays in years with severe sea ice disasters. During the ice melting period, the sea ice still spread primarily in the Liaodong Bay, manifesting an EN-WS-directed distribution; ④ Compared to years with mild sea ice disasters, years with severe sea ice disasters showed more favorable atmospheric circulation for sea ice formation, accompanied by stronger and cooler cold air behind the upper-level trough along the area from Lake Baikal to Northeastern China. Furthermore, there is a strong negative correlation between the sea ice situation in the Bohai Sea and the 500 hPa geopotential height, with the latter determining the former.

Keywords sea ice in Bohai Sea      sea ice area      sea ice condition      atmospheric circulation     
ZTFLH:  TP79  
Issue Date: 13 March 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yudi GUO
Tie WANG
Shanjun CHENG
Tao ZUO
Cite this article:   
Yudi GUO,Tie WANG,Shanjun CHENG, et al. Sea ice in Bohai Sea:Spatio-temporal distribution and the forcing effects of atmospheric circulation[J]. Remote Sensing for Natural Resources, 2024, 36(1): 242-249.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022441     OR     https://www.gtzyyg.com/EN/Y2024/V36/I1/242
Fig.1  Division diagram of Bohai Sea
年份 初冰日 盛冰日 消融日 冰期/d 盛冰日海冰面积/km2 冰级 峰型
2001—2002年 2001/12/17 2002/2/1 2002/3/3 76 5 067 1 单峰
2002—2003年 2002/12/8 2003/1/5 2003/3/3 86 23 226 2 多峰
2003—2004年 2003/12/8 2004/1/27 2004/2/23 84 16 846 2 单峰
2004—2005年 2004/12/16 2005/2/11 2005/3/11 86 18 923 3 多峰
2005—2006年 2005/12/14 2006/1/18 2006/3/14 91 12 770 3 单峰
2006—2007年 2006/12/9 2007/2/2 2007/2/15 69 9 070 1 单峰
2007—2008年 2007/12/7 2008/2/4 2008/2/29 85 12 241 2 单峰
2008—2009年 2008/12/14 2009/2/20 2009/3/6 83 9 461 2 多峰
2009—2010年 2009/12/5 2010/1/15 2010/3/16 102 30 781 4 多峰
2010—2011年 2010/12/6 2011/1/29 2011/3/7 92 34 122 4 单峰
2011—2012年 2011/12/11 2012/2/2 2012/3/11 92 23 174 3 单峰
2012—2013年 2012/12/8 2013/2/8 2013/3/15 98 30 531 4 多峰
2013—2014年 2013/12/13 2014/2/11 2014/3/2 80 11 411 2 单峰
2014—2015年 2014/12/5 2015/1/31 2015/2/23 81 6 705 1 单峰
2015—2016年 2015/12/4 2016/2/2 2016/3/10 98 35 569 4 单峰
2016—2017年 2016/12/14 2017/1/24 2017/3/3 80 6 247 2 单峰
2017—2018年 2017/12/5 2018/2/6 2018/3/16 102 22 237 3 多峰
2018—2019年 2018/12/4 2019/2/13 2019/3/1 86 7 969 2 多峰
2019—2020年 2019/12/4 2020/2/3 2020/2/23 82 7 075 1 多峰
2020—2021年 2020/12/10 2021/1/7 2021/3/2 83 15 887 2 多峰
Tab.1  Statistical table of sea ice in Bohai Sea from 2001 to 2020
Fig.2  Annual variation curves of winter sea ice in the Bohai Sea during 2010—2020
Fig.3  Interannual variation of sea ice area on ice-filled days and accumulated temperature in Bohai Sea from 2001 to 2020
Fig.4  Distribution of Bohai Sea ice in different ice class years
类型 初冰期 盛冰期 消融期
轻冰年
偏轻冰年
常冰年
偏重冰年
图例
Tab.2  Variation of sea ice growth and decline of Bohai Sea ice in different ice class years
Fig.5  Difference between heavy ice years and light ice years in the 500 hPa geopotential height field
Fig.6  Correlation analysis between Bohai Sea ice area on ice-filled days and 500 hPa geopotential height in winter
Fig.7  Temperature difference between heavy ice years and light ice years along 38°N zonal and 120°E radial profiles
[1] 李剑, 黄嘉佑, 刘钦政. 黄、渤海海冰长期变化特征分析[J]. 海洋预报, 2005, 22(2):22-32.
[1] Li J, Huang J Y, Liu Q Z. The Long-term variation characteristics of sea ice in the Bohai Sea and the North Huanghai Sea[J]. Marine Forecasts, 2005, 22(2):22-32.
[2] 白珊, 刘钦政, 李海, 等. 渤海的海冰[J]. 海洋预报, 1999, 16(3):1-9.
[2] Bai S, Liu Q Z, Li H, et al. Sea ice in the Bohai Sea of China[J]. Marine Forecasts, 1999, 16(3):1-9.
[3] 李万标, 朱元竞. 用静止卫星资料反演海冰分布[M]// 大气遥感技术论文集, 北京: 气象出版社, 1997:1-5.
[3] Li W B, Zhu Y J. Inversion of sea ice distribution from geostationary satellite data[M]// Proceedings of Atmospheric Remote Sensing Technology, Beijing: China Meteorological Press, 1997:1-5.
[4] 郑新江, 邱康睦, 陆风. 定量计算渤海海冰参数的遥感方法[J]. 应用气象学报, 1998, 9(3):359-363.
[4] Zheng X J, Qiu K M, Lu F. Quantitative calculation of sea ice over the Bohai Sea using NOAA/AVHRR imagery[J]. Quarterly Journal of Applied Meteorology, 1998, 9(3):359-363.
[5] 谢峰. 高时间分辨率遥感影像中渤海海冰信息的提取研究[D]. 北京: 北京师范大学, 2006.
[5] Xie F. Study on extracting sea ice information from high time resolution remote sensing images in Bohai Sea[D]. Beijing: Beijing Normal University, 2006.
[6] 马龙. NASA MODIS海冰产品评价分析——以辽东湾海冰监测为例[J]. 国土资源遥感, 2011, 23(1):115-117.doi:10.6046/gtzyyg.2011.01.23.
[6] Ma L, The Evaluation of NASA MODIS sea ice products:A case study of sea ice in Liaodong Bay[J]. Remote Sensing for Land and Resources, 2011, 23(1):115-117.doi:10.6046/gtzyyg.2011.01.23.
[7] 刘惠颖, 郭华东, 张露. 基于HJ-1C SAR数据的辽东湾海冰分类[J]. 国土资源遥感, 2014, 26(3): 125-129.doi:10.6046/gtzyyg.2014.03.20.
[7] Liu H Y, Guo H D, Zhang L. Approach to the classification of sea ice in Liaodong Bay using HJ - 1C SAR data[J]. Remote Sensing for Land and Resources, 2014, 26(3):125-129.doi: 10.6046/gtzyyg.2014.03.20.
[8] 王萌, 武胜利, 郑伟, 等. 长时间序列卫星遥感渤海海冰时空分布特征及与气温关系分析[J]. 气象, 2016, 42(10): 1237-1244.
[8] Wang M, Wu S L, Zheng W, et al. Temporal-spatial distribution of Bohai Sea sea-ice in long-time series and its correlation with air temperature[J]. Meteorological Monthly, 2016, 42(10):1237-1244.
[9] 刘成, 曹祥村, 尹朝晖, 等. 2007—2018年黄渤海海冰气候特征及其对气象因子的响应[J]. 海洋通报, 2019, 38(2):173-178.
[9] Liu C, Cao X C, Yin Z H, et al. Climatic characteristics of sea ice extent and its response to meteorological factors in the Yellow Sea and the Bohai Sea during 2007—2018[J]. Marine Science Bulletin, 2019, 38(2):173-178.
[10] Gong D Y, Kim S J, Ho C H. Arctic Oscillation and ice severity in the Bohai Sea,East Asia[J]. International Journal of Climatology, 2007, 27(10): 1287-1302.
doi: 10.1002/joc.v27:10 url: https://rmets.onlinelibrary.wiley.com/toc/10970088/27/10
[11] 左涛, 郭玉娣, 刘彬贤, 等. 基于MODIS数据的辽东湾海冰面积特征分析及与气温关系的探讨[J]. 海洋预报, 2021, 38(5):47-52.
[11] Zuo T, Guo Y D, Liu B X, et al. Characteristics analysis of the sea ice area based on MODIS satellite data in Liaodong Bay and its correlation with air temperature[J]. Marine Forecasts, 2021, 38(5):47-52.
[12] 唐茂宁, 洪洁莉, 刘煜, 等. 气候因子对渤海冰情影响的统计分析[J]. 海洋通报, 2015, 34(2):152-157.
[12] Tang M N, Hong J L, Liu Y, et al. Statistical analysis of climatic factors impacting on the Bohai Sea ice[J]. Marine Science Bulletin, 2015, 34(2):152-157.
[13] 王相玉, 张惠滋, 严素, 等. 渤、黄海北部海冰年代时空变化特征分析[J]. 海洋预报, 2007, 24(2): 26-32.
[13] Wang X Y, Zhang H Z, Yan S, et al. The characteristic of the spatio-temporal transformation of the sea-ice in northern part of the Bo-hai Sea and the Yellow Sea[J]. Marine Forecast, 2007, 24(2):26-32.
[14] 周须文, 史印山, 车少静, 等. 1960—2013年渤海海冰大气环流异常特征[J]. 气象与环境学报, 2015, 31(6):130-134.
[14] Zhou X W, Shi Y S, Che S J, et al. Characteristics of anomalous atmospheric circulation for sea ice in Bohai Sea from 1960 to 2013[J]. Journal of Meteorology and Environment, 2015, 31(6):130-134.
[15] 周须文, 何璇, 任妙春, 等. 渤海冰情异常年的典型大气环流概念模型[J]. 气象与环境学报, 2017, 40(4):109-113.
[15] Zhou X W, He X, Ren M C, et al. Conceptual model of typical atmospheric circulation in Bohai ice anomaly year[J]. Meteorological and Environmental Sciences, 2017, 40(4):109-113.
[1] LIU Yuan, LI Ting. Analyzing spatio-temporal changes in the shoreline morphology of Xiamen City in the context of urbanization[J]. Remote Sensing for Natural Resources, 2024, 36(1): 267-274.
[2] ZHOU Xiaojia. Application of remote sensing monitoring in abandoned arable land in a hilly region[J]. Remote Sensing for Natural Resources, 2024, 36(1): 235-241.
[3] YU Bing, WANG Bing, LIU Guoxiang, ZHANG Guo, HU Yunliang, HU Jinlong. Deformation monitoring and analysis of mining areas based on the DT-SDFPT combined time-series InSAR[J]. Remote Sensing for Natural Resources, 2024, 36(1): 14-25.
[4] FAN Jiahui, YAO Yunjun, YANG Junming, YU Ruiyang, LIU Lu, ZHANG Xueyi, XIE Zijing, NING Jing. Validation of Hi-GLASS products for latent heat flux based on Ameriflux observation data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 146-153.
[5] SONG Yingxu, ZOU Yujia, YE Runqing, HE Zhixia, WANG Ningtao. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024, 36(1): 154-161.
[6] YAO Lingyun, WANG Li, NIU Zheng, YIN Ziqi, FU Yuwen. Urban expansion in the Changsha-Zhuzhou-Xiangtan urban agglomeration and its urban heat island effect from 2000 to 2018[J]. Remote Sensing for Natural Resources, 2024, 36(1): 162-168.
[7] LU Yanling, HUANG Yaqi, ZHOU Junfen, WANG Jie, WEI Jingshan. Analyzing multidimensional rural poverty alleviation at the county level in Guangxi based on remote sensing data of nighttime light[J]. Remote Sensing for Natural Resources, 2024, 36(1): 169-178.
[8] LI Shijie, FENG Huihui, WANG Zhen, YANG Zhuolin, WANG Shu. Ecological environment in the Dongting Lake basin over the past decade: Spatio-temporal dynamic characteristics and their influencing factors from 2010 to 2019[J]. Remote Sensing for Natural Resources, 2024, 36(1): 179-188.
[9] HU Miaomiao, YAN Qingwu, LI Jianhui. Analyzing the spatio-temporal evolution of urban expansion in the Central Plains urban agglomeration and its driving force based on DMSP/OLS and NPP/VIIRS nighttime light images[J]. Remote Sensing for Natural Resources, 2024, 36(1): 189-199.
[10] YUAN Na, LIU Suihua, HU Haitao, YIN Xia, SONG Shanhai. Spatio-temporal variations and influencing factors of the stable forest land surface albedo in southeastern Guizhou Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 200-209.
[11] LIU Meiyan, NIE Sheng, WANG Cheng, XI Xiaohuan, CHENG Feng, FENG Baokun. Forest stock volume inversion based on ICESat-2 and Sentinel-2A data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 210-216.
[12] WANG Yilong, WANG Ran, YAN Ziqing, ZHANG Xinming, LI Xiaolong, XU Chongwen. Tectonic alteration information extraction and prospecting prediction for the Delong area of Qinghai Province based on GF-2 and ASTER data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 217-226.
[13] WU Bingjie, WEN Guangchao, ZHAO Meijuan, XIE Hongbo, FENG Yajie, JIA Lin. Analyzing the comprehensive evolutionary characteristics of the ecological environment in the Bayin River basin based on Landsat data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 227-234.
[14] JIANG Ruirui, GAN Fuping, GUO Yi, YAN Bokun. Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 1-13.
[15] LIU Xiaoliang, WANG Zhihua, XING Jianghe, ZHOU Rui, YANG Xiaomei, LIU Yueming, ZHANG Junyao, MENG Dan. Identifying and monitoring tailings ponds by integrating multi-source geographic data and high-resolution remote sensing images: A case study of Gejiu City, Yunnan Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 103-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech