Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (1) : 235-241     DOI: 10.6046/zrzyyg.2022435
|
Application of remote sensing monitoring in abandoned arable land in a hilly region
ZHOU Xiaojia1,2()
1. School of Geomatics,Liaoning Technical University, Fuxin 123000, China
2. Liaoning Provincial Surveying and Mapping Product Quality Supervision and Inspection Station,Shenyang 110034, China
Download: PDF(7691 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With continuously accelerated urbanization, urban expansion-induced farmland occupation and rural hollowing have gradually aggravated arable land abandonment, posing challenges to China’s food security. Hence, accurately determining the distribution of abandoned arable land is critical to arable land protection and food security. This study investigated a county in the major crop production area in a hilly region in southern China. Based on the phenological characteristics of local rice planting, this study adopted six phases of satellite remote sensing images and aerial images acquired in 2020 and 2021 were used as the data source and selected paddy fields determined based on the Third National Land Survey and field ridges in 1∶2 000 digital line graphics (DLGs) as the minimum information extraction unit. Then, the rice planting patches were extracted through time-series normalized difference vegetation index (NDVI) analysis and the improved SVM method. Suspected abandoned areas were screened out through the difference calculation for two consecutive years and then further identified in the unmanned aerial vehicle (UAV)-based sampling aerial survey. Consequently, the abandoned arable land areas were determined, with monitoring accuracy exceeding 85%, as revealed by on-site verification. The results of this study show that the space-air-ground integrated remote sensing monitoring method can provide scientific and effective data support for agricultural management departments to control and manage cultivated land abandonment.

Keywords satellite remote sensing      arable land abandonment      arable land protection      remote sensing monitoring     
ZTFLH:  TP79  
Issue Date: 13 March 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaojia ZHOU
Cite this article:   
Xiaojia ZHOU. Application of remote sensing monitoring in abandoned arable land in a hilly region[J]. Remote Sensing for Natural Resources, 2024, 36(1): 235-241.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022435     OR     https://www.gtzyyg.com/EN/Y2024/V36/I1/235
Fig.1  Location of research area
卫星型号及数据类型 2020年 2021年
4月 8月 10月 4月 8月 10月
GF-1 4 2 6 3 1 5
JLKF01A 2 4 5 4 4 2
JLKF01C 6 1 3 7 3 2
Superview-01 3 2 4 2 6 3
合计 15 9 18 16 14 12
Tab.1  
Fig.2  Technical route for monitoring abandoned cultivated land
Fig.3  NDVI curves of double cropping rice and single cropping rice
Fig.4  Distribution of wasteland
年份 Kappa 总体分类精度/%
2020年 0.846 88.31
2021年 0.856 89.42
Tab.2  Kappa coefficient and overall accuracy
Fig.5  Spatial distribution of abandoned land and local area amplification
坡度级别 坡度范围/(°) 撂荒面积/km2 占比/%
1 [0,2) 0.23 4.13
2 [2,6) 0.41 7.31
3 [6,15) 1.66 29.62
4 [15,25) 2.41 43.01
5 [25,90) 0.89 15.89
Tab.3  Wasteland area under five grades
[1] 王新友, 王玉娇. 耕地撂荒的文献计量分析:脉络和展望[J]. 干旱区地理, 2023, 46(5):804-813.
[1] Wang X Y, Wang Y J. Bibliometric analysis of cultivated land abandonment:Context and prospect[J]. Arid Land Geography, 2023, 46(5):804-813.
[2] 李升发, 李秀彬. 耕地撂荒研究进展与展望[J]. 地理学报, 2016, 71(3):370-389.
doi: 10.11821/dlxb201603002
[2] Li S F, Li X B. Progress and prospect on farmland abandonment[J]. Acta Geographica Sinica, 2016, 71(3):370-389.
doi: 10.11821/dlxb201603002
[3] 马清欣, 何三林. 对当前农村耕地撂荒和耕地质量下降问题的探讨[J]. 中国农业资源与区划, 2002, 23(4):19-21.
[3] Ma Q X, He S L. To probe into the problems of arable land wasting and its quality declining in rural areas at present[J]. Journal of China Agricultural Resources and Regional Planning, 2002, 23(4):19-21.
[4] Estel S, Kuemerle T, Alcántara C, et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series[J]. Remote Sensing of Environment, 2015, 163:312-325.
doi: 10.1016/j.rse.2015.03.028 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571500125X
[5] Xu Z, Mi W B, Mi N, et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities.[J]. Environmental Science and Pollution Research, 2020, 27(31):38835-38848.
doi: 10.1007/s11356-020-09877-9
[6] Sayfullina L B, Azizov Z M, Imashev I G, et al. Soil nitrification capacity as an integral indicator of soil fertility monitoring[J]. Russian Agricultural Sciences, 2022, 48(4) :290-295.
doi: 10.3103/S1068367422040127
[7] 张昊, 高小红, 史飞飞, 等. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4):144-154.doi:10.6046/gtzyyg.2021385.
[7] Zhang H, Gao X H, Shi F F, et al. based on the combination of Sentinel-2 MSI and Sentinel-1 SAR based extraction of abandoned land in the western the Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4):144-154.doi:10.6046/gtzyyg.2021385.
[8] 王玲玉, 陈全, 吴跃, 等. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3):23-31.doi:10.6046/gtzyyg.2020.03.04.
[8] Wang L Y, Chen Q, Wu Y, et al. Accurate recognition and extraction of karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land and Resources, 2020, 32 (3):23-31.doi:10.6046/gtzyyg.2020.03.04.
[9] 丁书培, 李蒙蒙, 汪小钦, 等. 基于时序遥感数据的福州市耕地非农化特征及驱动因子分析[J]. 遥感技术与应用, 2022, 37(3):550-563.
[9] Ding S P, Li M M, Wang X Q, et al. The use of time series remote sensing data to analyze the characteristics of non-agriculture farmland and their driving factors in Fuzhou[J]. Remote Sensing Technology and Application, 2022, 37 (3):550-563.
[10] 牟昱璇, 邬明权, 牛铮, 等. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 2020, 35(5):1127-1135.
[10] Mu Y X, Wu M Q, Niu Z, et al. Method of remote sensing extraction of cultivated land area under complex conditions in southern region[J]. Remote Sensing Technology and Application, 2020, 35 (5):1127-1135.
[11] 张天柱, 张凤荣, 黄敬文, 等. 工业化区域撂荒耕地空间格局演变及影响因素分析[J]. 农业工程学报, 2019, 35(15):246-255.
[11] Zhang T Z, Zhang F R, Huang J W, et al. Spatial pattern evolution of abandoned arable land and its influencing factor in industrialized region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (15):246-255.
[12] 滕晓波, 欧阳文一, 雷博. 农民占耕地建房的成因及对策分析——以宁远县柏家坪镇四元山村为例[J]. 国土资源导刊, 2022, 19(1):72-75.
[12] Teng X B, Ouyang W Y, Lei B. Analysis on causes and countermeasures of farmers occupying cultivated land to build houses:Taking Siyuanshan Village,Baijiaping Town,Ningyuan County as an example[J]. Land and Resources Herald, 2022, 19 (1):72-75.
[13] 蔡琼, 朱红梅, 肖婷. 耕地质量与耕地产能耦合度研究—以湖南宁远县为例[J]. 上海国土资源, 2022, 43(2):66-72.
[13] Cai Q, Zhu H M, Xiao T. On coupling degree of cultivated land quality and productivity:A case study of Ningyuan County,Hunan Province as an example[J]. Shanghai Land and Resources, 2022, 43(2):66-72.
[14] 李升发, 李秀彬, 辛良杰, 等. 中国山区耕地撂荒程度及空间分布——基于全国山区抽样调查结果[J]. 资源科学, 2017, 39(10):1801-1811.
doi: 10.18402/resci.2017.10.01
[14] Li S F, Li X B, Xin L J, et al. Extent and distribution of cropland abandonment in Chinese mountainous areas[J]. Resource Science, 2017, 39 (10):1801-1811.
[15] 牛继强, 林昊, 牛樱楠, 等. 经济欠发达地区撂荒耕地空间格局与驱动因素分析[J]. 农业机械学报, 2017, 48(2):141-149.
[15] Niu J Q, Lin H, Niu Y N, et al. Analysis of spatial pattern and driving factors for abandoned arable lands in underdevelopment region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2):141-149.
[16] 邓刚, 唐志光, 李朝奎, 等. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2):177-185.doi:10.6046/gtzyyg.2020.02.23.
[16] Deng G, Tang Z G, Li C K, et al. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing of Land and Resources, 2020, 32 (2):177-185.doi:10.6046/gtzyyg.2020.02.23.
[17] 柳文杰, 曾永年, 张猛. 融合时间序列环境卫星数据与物候特征的水稻种植区提取[J]. 遥感学报, 2018, 22(3):381-391.
[17] Liu W J, Zeng Y N, Zhang M. Mapping rice paddy distribution by using time series HJ blend data and phenological parameters[J]. Journal of Remote Sensing, 2018, 22 (3):381-391.
[18] 马尚杰, 裴志远, 王飞, 等. 基于GF-1影像的沿淮地区冬季耕地撂荒遥感调查应用[J]. 农业工程学报, 2019, 35(1):227-233.
[18] Ma S J, Pei Z Y, Wang F, et al. Application on remote sensing survey of abandoned farmlands in winter along the Huaihe River based on GF-1 image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1):227-233.
[19] 肖国峰, 朱秀芳, 侯陈瑶, 等. 撂荒耕地的提取与分析——以山东省庆云县和无棣县为例[J]. 地理学报, 2018, 73(9):1658-1673.
doi: 10.11821/dlxb201809004
[19] Xiao G F, Zhu X F, Hou C Y, et al. Extraction and analysis of abandoned farmland:A case study of Qingyun and Wudi Counties in Shandong Province as examples[J]. Acta Geographica Sinica, 2018, 73(9):1658-1673.
[20] 韦中晖, 靳海亮, 顾晓鹤, 等. 基于多时相协同变化检测的耕地撂荒遥感监测[J]. 遥感技术与应用, 2022, 37(3):539-549.
[20] Wei Z H, Jin H L, Gu X H, et al. Remote sensing monitoring of cultivated land abandonment based on multi temporal collaborative change detection[J]. Remote Sensing Technology and Application, 2022, 37(3):539-549.
[21] 李赞红, 阎建忠, 花晓波, 等. 不同类型农户撂荒及其影响因素研究——以重庆市12个典型村为例[J]. 地理研究, 2014, 33(4):721-734.
doi: 10.11821/dlyj201404012
[21] Li Z H, Yan J Z, Hua X B, et al. Factors influencing the culivated land abandonment of households of different types:A case study of 12 typical villages in Chongqing Municipality[J]. Geographical Research, 2014, 33 (4):721-734.
[22] 郑财贵, 邱道持, 叶公强, 等. 基于GIS空间分析的撂荒地空间分布特征研究——以重庆市璧山县大路镇为例[J]. 农机化研究, 2010, 32(3):31-36.
[22] Zheng C G, Qiu D C, Ye G Q, et al. Study on spatial distribution characteristics of abandoned cropland based on spatial analysis of GIS:A case of Dalu Town Bishan County in Chongqing Municipality[J]. Journal of Agricultural Mechanization Research, 2010, 32(3):31-36.
[1] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[2] LI Kailin, LIAO Kuo, DANG Haofei. Recent progress in chromaticity remote sensing of inland and nearshore water bodies[J]. Remote Sensing for Natural Resources, 2023, 35(1): 15-26.
[3] LI Xingyou, ZHANG Fei, WANG Zheng. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4): 11-21.
[4] WANG Juan, WANG Zhihong, ZHANG Jianguo, CHU Na, LI Si, YIN Zhan. Remote sensing monitoring and impact intensity assessment of human activities in Henan national nature reserves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 235-242.
[5] XIN Rongfang, LI Zongren, ZHANG Kun, ZHANG Xing, HUANG Li, LIU Baoshan. Remote sensing monitoring of the dynamic changes in geologic hazards in the Huangshui River basin of Qinghai Province[J]. Remote Sensing for Natural Resources, 2022, 34(4): 254-261.
[6] TONG Jing, YANG Jinzhong, DU Xin, DU Xiaomin, LI Chunbo, AN Na. Remote sensing-based monitoring of the treatment and redevelopment of the brownfields: A case study of brownfields in the risk control and rehabilitation list of Zhejiang Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 235-239.
[7] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[8] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[9] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[10] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[11] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[12] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[13] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[14] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[15] Hailing GU, Chao CHEN, Ying LU, Yanli CHU. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech