Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 25-33     DOI: 10.6046/zrzyyg.2022265
|
A quality-guided least squares phase unwrapping algorithm
XIAO Hui1,2(), LI Huitang1(), GU Yuehan1, SHENG Qinghong1
1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. School of Environmental Sciences, Nanjing Xiaozhuang University, Nanjing 211171, China
Download: PDF(8125 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Interferometric synthetic aperture Radar (InSAR) can extract three-dimensional information about a ground target from the phase information in an interferogram. Phase unwrapping is an important step in the InSAR process, and its accuracy dictates the accuracy of the digital elevation model (DEM) or the ground deformation information. To overcome the serious phase decorrelation and phase noise in complex mountainous areas, this study divided the study area according to the quality of interference phases and proposed a quality-guided least squares phase unwrapping algorithm. Then, the algorithm was employed for the phase unwrapping of simulated low-noise interferometric phase data and Sentinel-1A InSAR interferometric images of the Qinling area of China. The results show that the proposed algorithm can effectively improve the phase consistency among high- and low-quality zones and the overall accuracy of phase unwrapping.

Keywords InSAR      phase unwrapping      quality-guided method      least squares method     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui XIAO
Huitang LI
Yuehan GU
Qinghong SHENG
Cite this article:   
Hui XIAO,Huitang LI,Yuehan GU, et al. A quality-guided least squares phase unwrapping algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 25-33.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022265     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/25
Fig.1  Simulation data
Fig.2  Image of the study area
Fig.3  Flow processing of Interference image pair diagram
Fig.4  Interferometric phase correlation images
Fig.5  DEM correlation data after resampling
Fig.6  Interferometric phase correlation images
Fig.7  Unwrapping results
相位解缠算法 RMSE/rad
枝切法 7.37
质量引导法 2.37
无权最小二乘法 7.11
加权最小二乘法 4.07
本文算法 2.00
Tab.1  RMSE statistics of unwrapping results of various algorithms
Fig.8  Unwrapping results of real data
相位解缠算法 RMSE/rad
枝切法 解缠失败
质量引导法 20.08
无权最小二乘法 24.38
加权最小二乘法 24.04
本文算法 16.47
Tab.2  RMSE statistics of real data unwrapping results of various algorithms
[1] 周伟文. 利用星载InSAR 技术获取DEM及误差来源分析[J]. 测绘与地理信息, 2019, 42(2):135-137.
[1] Zhou W W. Analysis of DEM and error sources using spaceborne InSAR technique[J]. Geomatics and Spatial Information Technology, 2019, 42(2):135-137.
[2] Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture Radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3):333-382.
doi: 10.1109/5.838084 url: http://ieeexplore.ieee.org/document/838084/
[3] Gao Y, Zhang S, Li T, et al. Adaptive unscented Kalman filter phase unwrapping method and its application on Gaofen-3 interferometric SAR data[J]. Sensors, 2018, 18(6):1793.
doi: 10.3390/s18061793 url: http://www.mdpi.com/1424-8220/18/6/1793
[4] 余博, 李如仁, 陈振炜, 等. “高分三号”卫星图像干涉测量试验[J]. 航天返回与遥感, 2019, 40(1):66-73.
[4] Yu B, Li R R, Chen Z W, et al. Image interferometry experiment of GF-3 satellite[J]. Spacecraft Recovery and Remote Sensing, 2019, 40(1): 66-73.
[5] Sheng Q H, Li H T, Guo Y H, et al. Minimum cost flow phase unwrapping method considering range direction slope[J]. Journal of Applied Remote Sensing, 2022, 16(1): 014517.
[6] 刘国祥, 陈强, 罗小军. InSAR原理与应用[M]. 北京: 科学出版社, 2019.
[6] Liu G X, Chen Q, Luo X J. Principle and application of InSAR[M]. Beijing: Science Press, 2019.
[7] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas:Differential Radar interferometry[J]. Journal of Geophysical Research Solid Earth:Solid Earth, 1989, 94(b7): 9183-9191.
[8] Bone D J. Fourier fringe analysis:The two-dimensional phase unwrapping problem[J]. Applied Optics, 1991, 30(25):3627-3632.
doi: 10.1364/AO.30.003627 pmid: 20706437
[9] 岑小林, 毛建旭. 质量图和残差点相结合的InSAR相位解缠方法[J]. 遥感技术与应用, 2008, 23(5):556-560.
[9] Cen X L, Mao J X. InSAR phase unwrapping method using quality map with residues[J]. Remote Sensing Technology and Application, 2008, 23(5):556-560.
[10] 赵振强. 基于深度学习的InSAR相位解缠算法研究[D]. 北京: 中国地质大学(北京), 2019.
[10] Zhao Z Q. Research on InSAR phase unwrapping algorithm based on deep learning[D]. Beijing: China University of Geoscience(Beijing), 2019.
[11] Ghiglia D C, Romero L A. Minimum Lp-norm two-dimensional phase unwrapping[J]. Journal of the Optical Society of America A, 1996, 13(10):1999-2013.
doi: 10.1364/JOSAA.13.001999 url: https://opg.optica.org/abstract.cfm?URI=josaa-13-10-1999
[12] Lei Y, Qian F, Gang W Z. Optimized minimum spanning tree phase unwrapping algorithm for phase image of interferometric SAR[C]// 2006 6th International Conference on ITS Telecommunications.IEEE, 2006:1240-1243.
[13] 钱晓凡, 王占亮, 胡特, 等. 用单幅数字全息和剪切干涉原理重构光场相位[J]. 中国激光, 2010, 37(7):1821-1826.
[13] Qian X F, Wang Z L, Hu T, et al. Reconstructing the phase of wavefront using digital hologram and the principle of shearing interferometry[J]. Chinese Journal of Lasers, 2010, 37(7):1821-1826.
doi: 10.3788/CJL url: http://www.opticsjournal.net/zgjg.htm
[14] Costantini M. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):813-821.
doi: 10.1109/36.673674 url: http://ieeexplore.ieee.org/document/673674/
[15] Carballo G F, Fieguth P W. Probabilistic cost functions for network flow phase unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2192-2201.
doi: 10.1109/36.868877 url: http://ieeexplore.ieee.org/document/868877/
[16] 于勇, 王超, 张红, 等. 基于不规则网络下网络流算法的相位解缠方法[J]. 遥感学报, 2003, 7(6):472-477.
[16] Yu Y, Wang C, Zhang H, et al. A phase unwrapping method based on network flow algorithm in irregular network[J]. Journal of Remote Sensing, 2003, 7(6):472-477.
[17] 李伟华, 张华春, 张衡. 基于StereoSAR辅助的InSAR DEM重建方法研究[J]. 现代雷达, 2020, 42(1):55-63.
[17] Li W H, Zhang H C, Zhang H. InSAR DEM reconstruction method based on StereoSAR[J]. Modern Radar, 2020, 42(1):55-63.
[18] 高延东. 面向高精度DEM的InSAR关键处理技术研究[D]. 徐州: 中国矿业大学, 2019.
[18] Gao Y D. Research on key processing technology of InSAR for high precision DEM[D]. Xuzhou: China University of Mining and Technology, 2019.
[1] WANG Ning, JIANG Decai, ZHENG Xiangxiang, ZHONG Chang. Assessing the susceptibility of slope geological hazards based on multi-source heterogeneous data: A case study of Longgang District, Shenzhen City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 122-129.
[2] YI Bangjin, HUANG Cheng, FU Tao, SUN Jixing, ZHU Baoquan, ZHONG Cheng. SBAS-InSAR-based detection of geological hazards in alpine gorge areas near the China-Myanmar border[J]. Remote Sensing for Natural Resources, 2023, 35(4): 186-191.
[3] ZHAO Huawei, ZHOU Lin, TAN Minglun, TANG Minggao, TONG Qinggang, QIN Jiajun, PENG Yuhui. Early identification of potential landslides for the Sichuan-Chongqing power grid based on optical remote sensing and SBAS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(4): 264-272.
[4] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[5] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[6] ZHANG Shibo, HU Wenmin, HAN Zhenying, LI Guo, WANG Zhongcheng, GAO Zhihai. Differences in rocky desertification information extracted from GF-6 and Landsat8 using the pixel unmixing method: A case study of Puding County[J]. Remote Sensing for Natural Resources, 2023, 35(3): 274-283.
[7] JIANG Decai, ZHENG Xiangxiang, WANG Ning, XIAO Chunlei, ZHU Zhenzhou. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3): 292-301.
[8] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[9] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[10] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[11] DONG Jihong, MA Zhigang, LIANG Jingtao, LIU Bin, ZHAO Cong, ZENG Shuai, YAN Shengwu, MA Xiaobo. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources, 2022, 34(3): 73-81.
[12] LUO Xuewei, XIANG Xiqiong, LYU Yadong. PS correction of InSAR time series deformation monitoring for a certain collapse in Longli County[J]. Remote Sensing for Natural Resources, 2022, 34(3): 82-87.
[13] ZHANG Zhihua, HU Changtao, ZHANG Zhen, YANG Shuwen. PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai[J]. Remote Sensing for Natural Resources, 2022, 34(3): 106-111.
[14] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[15] MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 146-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech