Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 173-187     DOI: 10.6046/zrzyyg.2023008
|
Identification of landslide hazards based on multi-source remote sensing technology:A case study of the Changli area in Hunan Province
ZHANG Lijun1,2,3(), HE Sirui2, ZHANG Jiandong2(), PENG Guangxiong2, XU Zhibin1, XIE Jiancheng1, TANG Kai1, BU Jiancai1
1. Hunan Remote Sensing Geological Survey and Monitoring Institute, Changsha 410015, China
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitor (Central South University), Ministry of Education, Changsha 410083, China
3. Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Natural Resources Affairs Center, Changsha 410004, China
Download: PDF(39119 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Due to the intricate geographical and geological environment, the mountainous-hilly area of Changli in northern Hunan Province is challenged by numerous, widespread, scattered, and frequent landslide hazards, which constitute the most significant geologic hazard that causes casualties and economic losses. The multi-source remote sensing technology integrating InSAR, optical remote sensing, LiDAR, and GIS is currently a high-feasibility and high-precision landslide hazard identification and monitoring technology, meeting the requirements for macroscale and timeliness. This study identified and extracted landslide hazards in the Changli area based on InSAR deformation rate data, multispectral images, and DEM data. First, two decision tree classification methods were employed to classify the land use types based on multispectral images, facilitating the observation of land use types and their distributions in the Changli area. Then, five topographic factors, including elevation, slope, aspect, undulation, and curvature, were extracted from DEM data to evaluate the landslide risk in the Changli area. Then, five topographic factors, such as elevation, slope, aspect, undulation and curvature, are extracted from DEM data to evaluate the landslide risk in the study area. Furthermore, the time-series surface microdeformation of the Changli area was measured based on SBAS-InSAR technology. Finally, landslide hazards were extracted and delineated in the GIS by combining risk assessment results and deformation rates. Additionally, based on the classification and regression tree (CART) results and the river system distribution in the Changli area, risk inference was conducted on zones with deformation rates exceeding -0.01 m/a except the delineated landslide hazard sites. This study identified several small-scale landslide hazards with high concealment in vegetation-covered and bare zones, delineating their spatial distribution ranges, which covered an area of 0.126 km2. The multi-source remote sensing technology proved effective, demonstrating certain practical application value.

Keywords landslide hazard      DEM data      decision tree classification      SBAS-InSAR      Changli area in Hunan     
ZTFLH:  TP79  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lijun ZHANG
Sirui HE
Jiandong ZHANG
Guangxiong PENG
Zhibin XU
Jiancheng XIE
Kai TANG
Jiancai BU
Cite this article:   
Lijun ZHANG,Sirui HE,Jiandong ZHANG, et al. Identification of landslide hazards based on multi-source remote sensing technology:A case study of the Changli area in Hunan Province[J]. Remote Sensing for Natural Resources, 2024, 36(2): 173-187.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023008     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/173
Fig.1  Geographical and geological map of the study area
Fig.2  Schematic diagram of research technical route
指数 计算公式 备注
NDVI (NIR-R)/ (NIR+R) NIR为近红外波段反射率; R为红波段反射率
NDWI (Green-NIR)/(Green+NIR) Green为绿波段反射率; NIR为近红外波段反射率
NDBI (MIR-NIR)/ (MIR+NIR) MIR为中红外波段反射率; NIR为近红外波段反射率
Tab.1  List of normalized index formulas
Fig.3  Decision tree classification rule diagram
Fig.4  Decision tree classification result
Fig.5  Slope and aspect distribution image
Fig.6  Distribution image of slope height and topographic relief
Fig.7  Distribution image of slope curvature
Fig.8  Raw data and spatial-temporal baseline chart
Fig.9  SBAS-InSAR technical flow chart
Fig.10  DEM data and InSAR deformation rate data
Fig.11  Potential landslide with visual interpretation in landslide danger area
Fig.12  Evaluation criteria for landslide risk factors
Fig.13  Location of potential landslide
Tab.2  Verification results of some potential landslide hazard
Fig.14  Comparison diagram of CART decision tree classification and deformation rate
[1] 王治华. 中国滑坡遥感及新进展[J]. 国土资源遥感, 2007, 19(4):7-10.doi:10.6046/gtzyyg.2007.04.02.
[1] Wang Z H. Remote sensing for landslides in China and its recent progress[J]. Remote Sensing for Land and Resources, 2007, 19(4):7-10.doi:10.6046/gtzyyg.2007.04.02.
[2] 王恭先. 滑坡学与滑坡防治技术[M]. 北京: 中国铁道出版社, 2004.
[2] Wang G X. Landslide science and landslide prevention technology[M]. Beijing: China Railway Publishing House, 2004.
[3] 廖明生, 董杰, 李梦华, 等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报, 2021, 25(1):332-341.
[3] Liao M S, Dong J, Li M H, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1):332-341.
[4] 薛东剑, 张东辉, 何政伟, 等. 多源遥感影像融合技术在地质灾害调查中的应用[J]. 遥感技术与应用, 2011, 26(5):664-669.
[4] Xue D J, Zhang D H, He Z W, et al. Application of multi-source remote sensing image fusion in geohazard investigation[J]. Remote Sensing Technology and Application, 2011, 26(5):664-669.
[5] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
[5] Zhao Y S. Principles and methods of remote sensing application analysis[M]. Beijing: Science Press, 2003.
[6] 花利忠, 崔胜辉, 李新虎, 等. 汶川大地震滑坡体遥感识别及生态服务价值损失评估[J]. 生态学报, 2008, 28(12):5909-5916.
[6] Hua L Z, Cui S H, Li X H, et al. Remote sensing identification of earthquake trigged landsides and their impacts on ecosystem services:A case study of Wenchuan County[J]. Acta Ecologica Sinica, 2008, 28(12):5909-5916.
[7] Bouali E H, Oommen T, Escobar-Wolf R. Evidence of instability in previously-mapped landslides as measured using GPS,optical,and SAR data between 2007 and 2017:A case study in the Portuguese bend landslide complex,California[J]. Remote Sensing, 2019, 11(8):937.
[8] Tempa K, Peljor K, Wangdi S, et al. UAV technique to localize landslide susceptibility and mitigation proposal:A case of Rinchending Goenpa landslide in Bhutan[J]. Natural Hazards Research, 2021, 1(4):171-186.
[9] Dille A, Kervyn F, Handwerger A L, et al. When image correlation is needed:Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series[J]. Remote Sensing of Environment, 2021, 258:112402.
[10] 李晓英. 常德市土地生态保护研究[D]. 西安: 长安大学, 2008.
[10] Li X Y. Study on the Changde Land Ecological Protection[D]. Xi’an: Changan University, 2008.
[11] 洪明祥. 常德市科学制定"十五" 水利规划[J]. 宏观经济管理, 2001(9):41-42.
[11] Hong M X. Changde scientifically formulates the tenth five-year water conservancy plan[J]. Macroeconomic Management, 2001(9):41-42.
[12] 陈丹婷, 彭渤, 方小红, 等. 洞庭湖“四水”入湖河床沉积物主量元素地球化学特征及意义[J]. 第四纪研究, 2021, 41(5):1267-1280.
[12] Chen D T, Peng B, Fang X H, et al. Geochemistry of major elements in bed sediments from inlets of the four rivers to Dongting Lake,China[J]. Quaternary Sciences, 2021, 41(5):1267-1280.
[13] 李慧. 基于光学遥感和InSAR技术的滑坡早期识别与监测研究[D]. 广州: 广东工业大学, 2020.
[13] Li H. Study on early identification and monitoring of landslide based on optical remote sensing and InSAR technology[D]. Guangzhou: Guangdong University of Technology, 2020.
[14] 梁芳, 杨维芳, 李蓉蓉. 基于SBAS-InSAR技术的矿区地表形变监测研究[J]. 地理空间信息, 2022, 20(11):44-48.
[14] Liang F, Yang W F, Li R R. Research on surface deformation monitoring in mining area based on SBAS-InSAR technology[J]. Geospatial Information, 2022, 20(11):44-48.
[15] 万志强, 肖盛燮. 降雨型滑坡的形成及链式演化机理分析[J]. 西部交通科技, 2011(1):30-34.
[15] Wan Z Q, Xiao S X. Analysis of formation and chained evolution mechanism of land-slide induced by rainfall[J]. Western China Communications Science & Technology, 2011(1):30-34.
[16] 龚燃. 哨兵-2A光学成像卫星发射升空[J]. 国际太空, 2015(8):36-40.
[16] Gong R. Sentinel-2A satellite launches[J]. Space International, 2015(8):36-40.
[17] Bar-Hen A, Gey S, Poggi J M. Influence measures for CART classification trees[J]. Journal of Classification, 2015, 32(1):21-45.
[18] Martin Y E, Franklin S E. Classification of soil- and bedrock-dominated landslides in British Columbia using segmentation of satellite imagery and DEM data[J]. International Journal of Remote Sensing, 2005, 26(7):1505-1509.
[19] 李强, 张景发, 罗毅, 等. 2017年“8.8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-795.
[19] Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-795.
[20] 陶海军, 杨静, 叶小军. 基于ASTER遥感数据源的Creator三维地形建模技术研究[J]. 电脑知识与技术, 2011, 7(17):4152-4154.
[20] Tao H J, Yang J, Ye X J. Three dimensional terrain modeling method with creator software based on the ASTER remote sensing data[J]. Computer Knowledge and Technology, 2011, 7(17):4152-4154.
[21] 惠凤鸣, 田庆久, 李应成. Aster数据的DEM生产及精度评价[J]. 遥感信息, 2004, 19(1):14-18,63.
[21] Hui F M, Tian Q J, Li Y C. Production and accuracy assessment of DEM from ASTER stereo image data[J]. Remote Sensing Information, 2004, 19(1):14-18,63.
[22] 张帆宇. 积石峡水电站坝后Ⅰ号滑坡演化过程及稳定性研究[D]. 兰州: 兰州大学, 2007.
[22] Zhang F Y. Study on evolution process and stability of the No.1 landslide at the downstream of the Jishxia hydropower station[D]. Lanzhou: Lanzhou University, 2007.
[23] 张帆宇, 刘高, 谌文武, 等. 基于要素分析和二元统计模型的区域滑坡危险等级制图——以国道212线陇南段为例[J]. 地球科学进展, 2008, 23(10):1037-1042.
doi: 10.11867/j.issn.1001-8166.2008.10.1037
[23] Zhang F Y, Liu G, Chen W W, et al. A study of landslide susceptibility mapping based on factor analysis and bivariate statistics-With a case study in Longnan Area of national highway 212[J]. Advances in Earth Science, 2008, 23(10):1037-1042.
[24] 李含璞. 数字高程模型格网间距对提取地形因子的影响研究[J]. 测绘与空间地理信息, 2021, 44(10):183-188.
[24] Li H P. Research on influence of DEM resolution on extraction of terrain factors[J]. Geomatics & Spatial Information Technology, 2021, 44(10):183-188.
[25] 荀张媛. SAR与光学遥感融合在滑坡识别与监测中的应用[D]. 西安: 长安大学, 2020.
[25] Xun Z Y. Landslide identification and monitoring with the fusion of SAR and optical remote sensing[D]. Xi’an: Changan University, 2020.
[26] Niraj K C, Gupta S K, Shukla D P. Kotrupi landslide deformation study in non-urban area using DInSAR and MTInSAR techniques on Sentinel-1 SAR data[J]. Advances in Space Research, 2022, 70(12):3878-3891.
[27] Zhang T, Xie S, Fan J, et al. Detection of active landslides in southwest China using Sentinel-1 and ALOS-2 data[J]. Procedia Computer Science, 2021, 181:1138-1145.
[28] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
[29] 高腾飞. InSAR技术在地面沉降监测中的应用研究[D]. 青岛: 山东科技大学, 2018.
[29] Gao T F. Research on the application of InSAR technology in land subsidence monitoring[D]. Qingdao: Shandong University of Science and Technology, 2018.
[30] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[31] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
[32] 王刘宇. 联合SAR影像相位和强度信息的矿区形变监测关键技术研究[J]. 测绘学报, 2022, 51(9):1980.
doi: 10.11947/j.AGCS.2022.20210055
[32] Wang L Y. Study on key technologies of deformation monitoring in mining areas based on phase and intensity information of SAR images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9):1980.
doi: 10.11947/j.AGCS.2022.20210055
[1] CAI Jian’ao, MING Dongping, ZHAO Wenyi, LING Xiao, ZHANG Yu, ZHANG Xingxing. Integrated remote sensing-based hazard identification and disaster-causing mechanisms of landslides in Zayu County[J]. Remote Sensing for Natural Resources, 2024, 36(1): 128-136.
[2] ZHAO Huawei, ZHOU Lin, TAN Minglun, TANG Minggao, TONG Qinggang, QIN Jiajun, PENG Yuhui. Early identification of potential landslides for the Sichuan-Chongqing power grid based on optical remote sensing and SBAS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(4): 264-272.
[3] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[4] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[5] LUO Xuewei, XIANG Xiqiong, LYU Yadong. PS correction of InSAR time series deformation monitoring for a certain collapse in Longli County[J]. Remote Sensing for Natural Resources, 2022, 34(3): 82-87.
[6] XU Zixing, JI Min, ZHANG Guo, CHEN Zhenwei. Method for dynamic prediction of mining subsidence based on the SBAS-InSAR technology and the logistic model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 20-29.
[7] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[8] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[9] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[10] Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 20-27.
[11] WANG Jinjie, DING Jianli, ZHANG Cheng, CHEN Wenqian. Method of water information extraction by improved SWI based on GF-1 satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 29-35.
[12] SUN Xiaopeng, LU Xiaoya, WEN Xuehu, ZHEN Yan, WANG Lei. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 123-129.
[13] YANG Yuhui, YAN Meichun, LI Zhijia, YU Qing, CHEN Beibei. Classification model for "same subject with different spectra" on complicated surface in Southern hilly areas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 79-83.
[14] WANG Xingling, HU Deyong, TANG Hong, SHU Yang. Extraction of landslide information from airborne polarimetric SAR images based on Bayes decision theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 121-127.
[15] WAN Jianhua, LI Mei, REN Guangbo, MA Yi. Efficient method for updating coastal wetland map based on change detection technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech