Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 179-187     DOI: 10.6046/zrzyyg.2023285
|
Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the LandTrendr algorithm
CHEN Yuanyuan1(), YAN Shuoting1, YAN Jin1, ZHENG Siqi1, WANG Hao1, ZHU Jie1,2
1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2. Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou 239004, China
Download: PDF(5636 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The rapid and accurate acquisition of forest disturbances using advanced technological methods is of great significance for maintaining forest ecological security. In this study, all Landsat images of Lishui City, China from June to August from 1992 to 2022 were acquired. Based on the LandTrendr algorithm on the Google Earth Engine (GEE) platform, this study analyzed the characteristics of forest disturbances in the city. A spatiotemporal analysis of forest disturbances across various counties and cities within Lishui was conducted, and the influence patterns of natural factors including slope, elevation, and precipitation on forest disturbances were also explored. The results indicate that vegetation disturbances in Lishui City generally decreased over the 30 years. Spatially, the most severe forest disturbances occurred in Longquan City and Suichang County located in northwestern Lishui City. Temporally, 2008 witnessed the most severe forest disturbances. In addition, areas with gentle slopes and high elevations, as well as years with reduced precipitation, were more sensitive to forest disturbance over the 30 years. This study will provide a scientific basis and reference for the preservation and management of forest resources in Lishui City.

Keywords time series      LandTrendr      Google Earth Engine (GEE)      forest disturbance     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuanyuan CHEN
Shuoting YAN
Jin YAN
Siqi ZHENG
Hao WANG
Jie ZHU
Cite this article:   
Yuanyuan CHEN,Shuoting YAN,Jin YAN, et al. Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the LandTrendr algorithm[J]. Remote Sensing for Natural Resources, 2025, 37(1): 179-187.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023285     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/179
Fig.1  Land use distribution in the study area
参数 参数含义 取值
Max Segments 分割最大单元数目 7
Spike Threshold 初始阶段拟合的折点数 0.9
Vertex Count Overshoot 可超过的顶点数量 3
Prevent One Year
Recovery
是否阻止一年后恢复的情况 True
Recovery Threshold 恢复是否具有上升(正)趋势 0.5
p-value Threshold 回归分析中F检验的p值,超过该值的话,则认为该像元没有发生变化 0.05
Best Model Proportion 简单模型的选择规则,如果超过该值,则被选中 0.75
Min Observations Needed 拟合中需要的最少观测数 6
Tab.1  LandTrendr parameter
Fig.2  LandTrendr interference duration and visual interpretation of sample areas from 2007 to 2009
Fig.3  The year of LandTrendr interference and the visual interpretation of sample areas
Fig.4  Assessment of forest disturbance accuracy
Fig.5  Overall distribution of forest disturbance in Lishui City
Fig.6  Characteristics of disturbance changes in Lishui City over the years
Fig.7  Disturbance variation characteristics of cities and counties in Lishui City
Fig.8  Forest disturbance of different slopes in Lishui City
Fig.9  Forest disturbance at different altitudes in Lishui City
Fig.10  Characteristics of annual disturbance area ratio and average annual precipitation over time in Lishui City
[1] De Marzo T, Pflugmacher D, Baumann M, et al. Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,98:102310.
[2] Chen Y, Luo G, Maisupova B, et al. Carbon budget from forest land use and management in Central Asia during 1961—2010[J]. Agricultural and Forest Meteorology, 2016,221:131-141.
[3] He L H, Zhou Y K, Yang Q. Characteristics of spatial-temporal changes in vegetation coverage in Yan’an region during 2000—2013[J]. Journal of Arid Land Resources and Environment, 2015, 29(11):174-179.
[4] Almeida D R A, Stark S C, Chazdon R, et al. The effectiveness of LiDAR remote sensing for monitoring forest cover attributes and landscape restoration[J]. Forest Ecology and Management, 2019,438:34-43.
[5] Li M, Zuo S, Su Y, et al. An approach integrating multi-source data with LandTrendr algorithm for refining forest recovery detection[J]. Remote Sensing, 2023, 15(10):2667.
[6] 王燕, 朱婷茹, 何立恒. 森林资源遥感调查研究进展[J]. 现代测绘, 2022, 45(6):1-6,60.
[6] Wang Y, Zhu T R, He L H. Research progress on forest resources inventory based on remote sensing[J]. Modern Surveying and Mapping, 2022, 45(6):1-6,60.
[7] 王平. 南通市生态环境遥感监测及其动态变化研究[J]. 环境监控与预警, 2012, 4(6):42-45.
[7] Wang P. Study on dynamic changes of remote sensing and application to ecological environment monitoring in Nantong[J]. Environmental Monitoring and Forewarning, 2012, 4(6):42-45.
[8] 杨强, 王婷婷, 陈昊, 等. 基于MODIS EVI数据的锡林郭勒盟植被覆盖度变化特征[J]. 农业工程学报, 2015, 31(22):191-198,315.
[8] Yang Q, Wang T T, Chen H, et al. Characteristics of vegetation cover change in Xilin Gol League based on MODIS EVI data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22):191-198,315.
[9] 钟莉, 陈芸芝, 汪小钦. 基于Landsat时序数据的森林干扰监测[J]. 林业科学, 2020, 56(5):80-88.
[9] Zhong L, Chen Y Z, Wang X Q. Forest disturbance monitoring based on time series of landsat data[J]. Scientia Silvae Sinicae, 2020, 56(5):80-88.
[10] 沈文娟, 李明诗, 黄成全. 长时间序列多源遥感数据的森林干扰监测算法研究进展[J]. 遥感学报, 2018, 22(6):1005-1022.
[10] Shen W J, Li M S, Huang C Q. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion[J]. Journal of Remote Sensing, 2018, 22(6):1005-1022.
[11] Cohen W B, Yang Z, Kennedy R. Detecting trends in forest disturbance and recovery using yearly Landsat time series:2.TimeSync—Tools for calibration and validation[J]. Remote Sensing of Environment, 2010, 114(12):2911-2924.
[12] Verbesselt J, Zeileis A, Herold M. Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012,123:98-108.
[13] Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014,144:152-171.
[14] 秦乐, 何鹏, 马玉忠, 等. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4):105-112.doi:10.6046/zrzyyg.2021351.
[14] Qin L, He P, Ma Y Z, et al. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4):105-112.doi:10.6046/zrzyyg.2021351.
[15] Huang C, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010, 114(1):183-198.
[16] 苏文瑞, 田佳, 杨泽康, 等. 基于GEE和LandTrendr的宁夏“三山” 森林干扰监测[J]. 中国水土保持科学(中英文), 2022, 20(6):41-49.
[16] Su W R, Tian J, Yang Z K, et al. Monitoring of forest disturbance in “Three Mountains” of Ningxia based on GEE and LandTrendr[J]. Science of Soil and Water Conservation, 2022, 20(6):41-49.
[17] DeVries B, Verbesselt J, Kooistra L, et al. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series[J]. Remote Sensing of Environment, 2015,161:107-121.
[18] Mugiraneza T, Nascetti A, Ban Y. Continuous monitoring of urban land cover change trajectories with landsat time series and LandTrendr-Google Earth Engine cloud computing[J]. Remote Sensing, 2020, 12(18):2883.
[19] Kennedy R, Yang Z, Gorelick N, et al. Implementation of the LandTrendr algorithm on Google Earth Engine[J]. Remote Sensing, 2018, 10(5):691.
[20] 官王飞, 徐建恩, 叶珊, 等. 丽水市“十三五” 期间林木采伐现状分析[J]. 福建林业科技, 2022, 49(3):111-115,124.
[20] Guan W F, Xu J E, Ye S, et al. Current situation analysis of forest cutting in Lishui City during the 13th Five-Year Plan[J]. Journal of Fujian Forestry Science and Technology, 2022, 49(3):111-115,124.
[21] Shen J, Chen G, Hua J, et al. Contrasting forest loss and gain patterns in subtropical China detected using an integrated LandTrendr and machine-learning method[J]. Remote Sensing, 2022, 14(13):3238.
[22] 王塞, 王思诗, 樊风雷. 基于时间序列分割算法的雅鲁藏布江流域NDVI(1985—2018)变化模式研究[J]. 生态学报,2020, 40(19):6863-6871.
[22] Wang S, Wang S S, Fan F L. Change patterns of NDVI (1985—2018) in the Yarlung Zangbo River basin of China based on time series segmentation algorithm[J]. Acta Ecologica Sinica,2020, 40(19):6863-6871.
[23] 于森, 贾明明, 陈高, 等. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2):42-49.doi:10.6046/zrzyyg.2022235.
[23] Yu S, Jia M M, Chen G, et al. A study of the disturbance to mangrove forests in Dongzhaigang,Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2):42-49.doi:10.6046/zrzyyg.2022235.
[24] Qiu D, Liang Y, Shang R, et al. Improving LandTrendr forest disturbance mapping in China using multi-season observations and multispectral indices[J]. Remote Sensing, 2023, 15(9):2381.
[25] 杨辰, 沈润平. 森林扰动遥感监测研究进展[J]. 国土资源遥感, 2015, 27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.
[25] Yang C, Shen R P. Progress in the study of forest disturbance by remote sensing[J]. Remote Sensing for Land and Resources, 2015, 27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.
[26] Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr—Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12):2897-2910.
[27] 殷崎栋, 柳彩霞, 田野. 基于Landsat时序影像和LandTrendr算法的森林保护区植被扰动研究——以陕西柴松和太白山保护区为例[J]. 生态学报, 2020, 40(20):7343-7352.
[27] Yin Q D, Liu C X, Tian Y. Detecting dynamics of vegetation disturbance in forest natural reserve using Landsat imagery and LandTrendr algorithm:The case of Chaisong and Taibaishan Natural Reserves in Shaanxi,China[J]. Acta Ecologica Sinica, 2020, 40(20):7343-7352.
[28] 陈海喜, 钟九生, 兰安军, 等. 基于地形地貌因子的贵州省NDVI时空变化分析[J]. 贵州科学, 2019, 37(2):36-43.
[28] Chen H X, Zhong J S, Lan A J, et al. Analysis of temporal and spatial variation of NDVI in Guizhou Province based on landform factors[J]. Guizhou Science, 2019, 37(2):36-43.
[29] 维基百科编者. 丽水市[G/OL].维基百科,2024(20240201)[2024-02-01].https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82&o|did=80740233.
url: https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82&o|did=80740233
[29] Wikipedia editor. Lishui CityWikipedia,2024 (20240201) [2024-02-01].https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82&o|did=80740233.
url: https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82&o|did=80740233
[30] 尹雄, 陈帮乾, 古晓威, 等. 基于GEE平台LandTrendr算法的海南岛森林扰动快速监测方法及分析[J]. 地球信息科学学报, 2023, 25(10):2093-2106.
doi: 10.12082/dqxxkx.2023.220691
[30] Yin X, Chen B Q, Gu X W, et al. Rapid monitoring of tropical forest disturbance in Hainan Island based on GEE platform and LandTrendr algorithm[J]. Journal of Geo-Information Science, 2023, 25(10):2093-2106.
[1] CHEN Zhiyang, MAO Dehua, WANG Zongming, LIN Nan, JIA Mingming, REN Chunying, WANG Ming. Information extraction of aquaculture ponds in the Jianghan Plain based on Sentinel-2 time-series data[J]. Remote Sensing for Natural Resources, 2025, 37(1): 169-178.
[2] YU Wenxuan, LI Yimin, JI Peikun, FENG Xianjie, XIANG Qianying. Time series surface deformation of the upper reaches of Huangdeng hydropower station in Lanping County based on ascending and descending SAR data[J]. Remote Sensing for Natural Resources, 2024, 36(4): 282-294.
[3] LING Xiaolu, CHEN Chaorong, GUO Weidong, QIN Kai, ZHANG Jinlong. Comprehensive evaluation of ESA CCI soil moisture data in eastern China[J]. Remote Sensing for Natural Resources, 2024, 36(4): 92-106.
[4] SONG Yingxu, ZOU Yujia, YE Runqing, HE Zhixia, WANG Ningtao. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024, 36(1): 154-161.
[5] MING Xiaoyong, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, LIN Junliang. Monitoring and analyzing land subsidence in Qinfang, Guangxi based on Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 35-48.
[6] YI Bangjin, HUANG Cheng, FU Tao, SUN Jixing, ZHU Baoquan, ZHONG Cheng. SBAS-InSAR-based detection of geological hazards in alpine gorge areas near the China-Myanmar border[J]. Remote Sensing for Natural Resources, 2023, 35(4): 186-191.
[7] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[8] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[9] QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
[10] YU Wen, GONG Huili, CHEN Beibei, ZHOU Chaofan. Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing[J]. Remote Sensing for Natural Resources, 2022, 34(4): 183-193.
[11] DONG Jihong, MA Zhigang, LIANG Jingtao, LIU Bin, ZHAO Cong, ZENG Shuai, YAN Shengwu, MA Xiaobo. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources, 2022, 34(3): 73-81.
[12] ZENG Hui, REN Huazhong, ZHU Jinshun, GUO Jinxin, YE Xin, TENG Yuanjian, NIE Jing, QIN Qiming. Impacts of the Syrian Civil War on vegetation[J]. Remote Sensing for Natural Resources, 2022, 34(3): 121-128.
[13] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[14] LUO Hongjian, MING Dongping, XU Lu. Time series calculation of remote sensing ecological index based on GEE[J]. Remote Sensing for Natural Resources, 2022, 34(2): 271-277.
[15] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech