Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 172-182     DOI: 10.6046/zrzyyg.2024215
|
Spatiotemporal evolution and prediction of ecosystem carbon storage in Xianyang City based on the PLUS-InVEST model
CHEN Qiuji(), XIE Mimi(), NAN Dandan, LUO Hao
College of Geomatics,Xi’an University of Science and Technology,Xi’an 710054,China
Download: PDF(3470 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Land use change is a primary driver of carbon storage changes in terrestrial ecosystems. Investigating its impact on carbon storage is crucial for optimizing territorial spatial planning and reducing regional carbon emissions. Focusing on Xianyang City,this study analyzed changes in land use and carbon storage over the past two decades (2000—2020) based on corresponding land-use data from 2000,2010,and 2020,using the patch-generating land use simulation (PLUS) and integrated valuation of ecosystem services and tradeoffs (InVEST) models. Moreover,it predicted the distribution of carbon storage in 2030 under four scenarios:natural growth,urban development,cropland protection,and ecological protection. The results indicate that in 2000,2010,and 2020,Xianyang City exhibited carbon storage of 10 047.534×104 t,10 120.754×104 t,and 10 030.210×104 t,respectively,characterized by a pattern of an initial increase followed by a decrease. The conversion of grassland to forest and cropland to construction land was identified as the main factor contributing to the increase and decrease in carbon storage,respectively. Among the four scenarios for 2030,cropland protection and ecological protection scenarios displayed increased carbon storage,while the urban development scenario experienced the most significant decline in carbon storage due to the rapid expansion of construction land. Areas with high carbon storage were mainly concentrated in northern Xianyang,whereas those with low carbon storage were distributed in the southern economic centers. Looking ahead,the future planning in Xianyang should fully consider the impacts of land use on carbon storage,ecological land protection,and restriction of extensive construction land expansion. By doing so,the city can achieve dual optimization of land use and carbon emissions. The findings provide a scientific basis and data reference for enhancing ecosystem carbon sink capacity and optimizing terrestrial spatial planning in Xianyang City.

Keywords patch-generating land use simulation (PLUS) model      integrated valuation of ecosystem services and tradeoffs (InVEST) model      land use change      carbon storage      Xianyang City     
ZTFLH:  TP79  
  X87  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiuji CHEN
Mimi XIE
Dandan NAN
Hao LUO
Cite this article:   
Qiuji CHEN,Mimi XIE,Dandan NAN, et al. Spatiotemporal evolution and prediction of ecosystem carbon storage in Xianyang City based on the PLUS-InVEST model[J]. Remote Sensing for Natural Resources, 2025, 37(5): 172-182.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024215     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/172
Fig.1  Overview of the study area
土地利
用类型
地上
碳密度
地下
碳密度
土壤
碳密度
死亡有机
物碳密度
耕地 28.14 3.20 72.50 0
林地 24.56 5.97 87.30 13
草地 1.59 4.57 60.19 2.11
水域 0.30 0 0 0
建设用地 2.35 0 0 0
Tab.1  Carbon density of each land type in the study area (t/hm2
地类 Q1 Q2 Q3 Q4
耕地 林地 草地 水域 建设
用地
耕地 林地 草地 水域 建设
用地
耕地 林地 草地 水域 建设
用地
耕地 林地 草地 水域 建设
用地
耕地 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
林地 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0
草地 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
水域 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1 0
建设用地 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1
Tab.2  Multi-scenario transition matrix
Fig.2  Spatial distribution of land use in Xianyang City from 2000 to 2020
Fig.3  Sankey diagram of land use type conversion in Xianyang City from 2000 to 2020
地类 2000年 2010年 2020年 2000—2020年
变化量
耕地 6 540.08 6 412.07 6 353.04 -187.03
林地 2 800.66 3 211.59 3 190.63 389.97
草地 690.08 477.30 464.57 -225.51
水域 0.15 0.11 0.10 -0.05
建设用地 16.56 19.69 21.85 5.29
总计 10 047.53 10 120.75 10 030.20 -17.33
Tab.3  Carbon storage of each land type in Xianyang City from 2000 to 2020 (104t)
Fig.4  Spatial distribution and variation of carbon storage in Xianyang City from 2000 to 2020
土地利用
类型转化
面积/km2 植被碳储
量变化/
104 t
土壤碳储
量变化/
104 t
总碳储量
变化/
104 t
耕地-林地 105.66 -0.86 29.37 28.52
耕地-草地 67.61 -17.03 -6.90 -23.92
耕地-水域 16.98 -5.27 -12.31 -17.58
耕地-建设用地 428.14 -124.12 -310.40 -434.52
小计 618.39 -147.27 -300.24 -447.51
林地-耕地 78.48 0.64 -21.82 -21.18
林地-草地 121.35 -29.57 -46.11 -75.69
林地-水域 3.05 -0.92 -3.06 -3.99
林地-建设用地 1.84 -0.52 -1.85 -2.36
小计 204.72 -30.38 -72.84 -103.22
草地-耕地 119.98 30.21 12.24 42.45
草地-林地 394.00 96.02 149.72 245.74
草地-水域 3.51 -0.21 -2.18 -2.39
草地-建设用地 8.10 -0.31 -5.05 -5.36
小计 525.59 125.71 154.72 280.44
水域-耕地 28.84 8.95 20.91 29.86
水域-林地 2.86 0.87 2.87 3.74
水域-草地 3.91 0.23 2.44 2.67
水域-建筑用地 1.80 0.04 0.00 0.04
小计 37.42 10.08 26.22 36.30
建设用地-耕地 210.98 61.16 152.96 214.12
建设用地-林地 0.28 0.08 0.29 0.37
建设用地-草地 3.30 0.13 2.06 2.18
建设用地-水域 0.27 -0.01 0.00 -0.01
小计 214.83 61.36 155.30 216.66
总计 1 600.95 19.51 -36.84 -17.32
Tab.4  Changes in carbon stocks caused by land type transfers from 2000 to 2020
Fig.5  Spatial distribution of land use under four scenarios in Xianyang City in 2030
地类 面积/km2 变化率/%
2020年 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
耕地 6 118.11 6 072.93 6 036.62 6 145.38 6 103.87 -0.74 -1.33 0.45 -0.23
林地 2 438.76 2 421.02 2 419.87 2 425.98 2 467.97 -0.73 -0.77 -0.52 1.20
草地 678.60 663.24 661.78 663.83 655.74 -2.26 -2.48 -2.18 -3.37
水域 35.76 35.21 35.11 35.30 35.76 -1.53 -1.82 -1.29 0.01
建设用地 929.92 1 008.76 1 047.78 930.66 937.81 8.48 12.67 0.08 0.85
Tab.5  Land type area and change rate unde four scenarios in Xianyang City in 2030
地类 2020年 Q1 Q2 Q3 Q4
耕地 6 353.045 6 306.126 6 268.429 6 381.367 6 338.256
林地 3 190.634 3 167.423 3 165.910 3 173.910 3 228.844
草地 464.571 454.055 453.057 454.456 448.921
水域 0.107 0.106 0.105 0.106 0.107
建设用地 21.853 23.706 24.623 21.871 22.039
总计 10 030.210 9 951.414 9 912.123 10 031.711 10 038.168
Tab.6  The carbon storage of each land type in Xianyang City under four scenarios in 2030 (104t)
Fig.6  Spatial distribution of carbon storage in Xianyang City under four scenarios in 2030
[1] Xi F, Lin G, Zhao Y, et al. Land use optimization and carbon storage estimation in the Yellow River Basin,China[J]. Sustainability, 2023, 15(14):11278.
[2] 孙方虎, 方凤满, 洪炜林, 等. 基于PLUS和InVEST模型的安徽省碳储量演化分析与预测[J]. 水土保持学报, 2023, 37(1):151-158.
[2] Sun F H, Fang F M, Hong W L, et al. Evolution analysis and prediction of carbon storage in Anhui Province based on PLUS and InVEST model[J]. Journal of Soil and Water Conservation, 2023, 37(1):151-158.
[3] Chang X Q, Xing Y Q, Wang J Q, et al. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018[J]. Resources,Conservation and Recycling,2022,182:106333.
[4] 张鹏, 李良涛, 苏玉姣, 等. 基于PLUS和InVEST模型的邯郸市碳储量空间分布特征研究[J]. 水土保持通报, 2023, 43(3):338-348.
[4] Zhang P, Li L T, Su Y J, et al. Spatial and temporal distribution characteristics of carbon storage in Handan City based on PLUS and InVEST models[J]. Bulletin of Soil and Water Conservation, 2023, 43(3):338-348.
[5] Xu C L, Zhang Q B, Yu Q, et al. Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin,China[J]. Ecological Indicators,2023, 151:110345.
[6] Li Z, Tang Q, Wang X, et al. Grassland carbon change in northern China under historical and future land use and land cover change[J]. Agronomy, 2023, 13(8):2180.
[7] 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3):397-409.
[7] Liu X J, Li X, Liang X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39(3):397-409.
doi: 10.13284/j.cnki.rddl.003138
[8] 朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74(3):446-459.
doi: 10.11821/dlxb201903004
[8] Zhu W B, Zhang J J, Cui Y P, et al. Assessment of territorial ecosystem carbon storage based on land use change scenario:A case study in Qihe River Basin[J]. Acta Geographica Sinica, 2019, 74(3):446-459.
[9] 谢宇剑, 沈正平, 赵洁. 基于土地利用变化情景的徐州市生态系统碳储量评估[J]. 国土与自然资源研究, 2022(4):13-21.
[9] Xie Y J, Shen Z P, Zhao J. Evaluation of ecosystem carbon storage in Xuzhou City based on land use change scenarios[J]. Territory & Natural Resources Study, 2022(4):13-21.
[10] 王超越, 郭先华, 郭莉, 等. 基于FLUS-InVEST的西北地区土地利用变化及其对碳储量的影响——以呼包鄂榆城市群为例[J]. 生态环境学报, 2022, 31(8):1667-1679.
doi: 10.16258/j.cnki.1674-5906.2022.08.019
[10] Wang C Y, Guo X H, Guo L, et al. Land use change and its impact on carbon storage in Northwest China based on FLUS-InVEST:A case study of Hu-Bao-Er-Yu urban agglomeration[J]. Ecology and Environmental Sciences, 2022, 31(8):1667-1679.
[11] Odebiri O, Mutanga O, Odindi J, et al. Evaluation of projected soil organic carbon stocks under future climate and land cover changes in South Africa using a deep learning approach[J]. Journal of Environmental Management, 2023, 330:117127.
[12] 朱志强, 马晓双, 胡洪. 基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报, 2021, 41(2):222-229,239.
[12] Zhu Z Q, Ma X S, Hu H. Spatio-temporal evolution and prediction of ecosystem carbon stocks in Guangzhou City by coupling FLUS-InVEST models[J]. Bulletin of Soil and Water Conservation, 2021, 41(2):222-229,239.
[13] 于文慧, 徐兆阳, 陈春森, 等. 逻辑回归元胞自动机模型的鸡西市城市扩张分析及预测[J]. 测绘与空间地理信息, 2022, 45(1):45-49,54.
[13] Yu W H, Xu Z Y, Chen C S, et al. Analysis and prediction of the urban expansion of Jixi City based on logistic regression cellular automate model[J]. Geomatics & Spatial Information Technology, 2022, 45(1):45-49,54.
[14] Wang Q Z, Guan Q Y, Sun Y F, et al. Simulation of future land use/cover change (LUCC) in typical watersheds of arid regions under multiple scenarios[J]. Journal of Environmental Management, 2023, 335:117543.
[15] 高周冰, 王晓瑞, 隋雪艳, 等. 基于FLUS和InVEST模型的南京市生境质量多情景预测[J]. 农业资源与环境学报, 2022, 39(5):1001-1013.
[15] Gao Z B, Wang X R, Sui X Y, et al. Multi-scenario prediction of habitat quality in Nanjing based on FLUS and InVEST models[J]. Journal of Agricultural Resources and Environment, 2022, 39(5):1001-1013.
[16] 伍丹, 朱康文, 张晟, 等. 基于PLUS模型和InVEST模型的成渝经济区碳储量演化分析[J]. 三峡生态环境监测, 2022, 7(2):85-96.
[16] Wu D, Zhu K W, Zhang S, et al. Evolution analysis of carbon stock in Chengdu-Chongqing Economic Zone based on PLUS model and InVEST model[J]. Ecology and Environmental Monitoring of Three Gorges, 2022, 7(2):85-96.
[17] Liang X, Guan Q F, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model:A case study in Wuhan,China[J]. Computers,Environment and Urban Systems, 2021, 85:101569.
[18] Wang Z Y, Li X, Mao Y T, et al. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level:A case study of Bortala,China[J]. Ecological Indicators, 2022, 134:108499.
[19] 李姣, 汪杰, 李朗, 等. 洞庭湖生态经济区土地利用变化对碳储量的影响[J]. 生态学杂志, 2022, 41(6):1156-1165.
[19] Li J, Wang J, Li L, et al. Impact of land use change on carbon storage in the Dongting Lake Eco-economic Zone[J]. Chinese Journal of Ecology, 2022, 41(6):1156-1165.
doi: DOI: 10.13292/j.1000-4890.202206.026
[20] 张平平, 李艳红, 殷浩然, 等. 中国南北过渡带生态系统碳储量时空变化及动态模拟[J]. 自然资源学报, 2022, 37(5):1183-1197.
doi: 10.31497/zrzyxb.20220506
[20] Zhang P P, Li Y H, Yin H R, et al. Spatio-temporal variation and dynamic simulation of ecosystem carbon storage in the north-south transitional zone of China[J]. Journal of Natural Resources, 2022, 37(5):1183-1197.
[21] 李俊, 杨德宏, 吴锋振, 等. 基于PLUS与InVEST模型的昆明市土地利用变化动态模拟与碳储量评估[J]. 水土保持通报, 2023, 43(1):378-387.
[21] Li J, Yang D H, Wu F Z, et al. Dynamic simulation of land use changes and assessment of carbon storage in Kunming City based on PLUS and InVEST models[J]. Bulletin of Soil and Water Conservation, 2023, 43(1):378-387.
[22] 侯建坤, 陈建军, 张凯琪, 等. 基于InVEST和GeoSoS-FLUS模型的黄河源区碳储量时空变化特征及其对未来不同情景模式的响应[J]. 环境科学, 2022, 43(11):5253-5262.
[22] Hou J K, Chen J J, Zhang K Q, et al. Temporal and spatial variation characteristics of carbon storage in the source region of the Yellow River based on InVEST and GeoSoS-FLUS models and its response to different future scenarios[J]. Environmental Science, 2022, 43(11):5253-5262.
[23] Li K M, Cao J J, Adamowski J F, et al. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model:A case study in Huining County,China[J]. Environmental Development,2021, 39:100641.
[24] 孙欣欣, 薛建辉, 董丽娜. 基于PLUS模型和InVEST模型的南京市生态系统碳储量时空变化与预测[J]. 生态与农村环境学报, 2023, 39(1):41-51.
[24] Sun X X, Xue J H, Dong L N. Spatiotemporal change and prediction of carbon storage in Nanjing ecosystem based on PLUS model and InVEST model[J]. Journal of Ecology and Rural Environment, 2023, 39(1):41-51.
[25] 杨洁. 基于FLUS-InVEST模型的黄河流域土地利用变化模拟与碳储量估算研究[D]. 郑州: 河南大学, 2023.
[25] Yang J. Simulation of land use change and carbon stock estimation in the Yellow River Basin based on FLUS-InVEST model[D]. Zhengzhou: Henan University, 2023.
[26] 岳程瑜. 陕西省森林碳储量及其碳汇潜力估算研究[D]. 杨凌: 西北农林科技大学, 2023.
[26] Yue C Y. Estimation study of forest carbon storage and carbon sequestration potential in Shaanxi Province[D]. Yangling: Northwest A & F University, 2023.
[27] 古圳威, 刘京, 陈怡, 等. 陕西渭北旱塬区生境质量及碳储量时空演变分析与模拟[J]. 环境科学, 2023, 44(8):4666-4678.
[27] Gu Z W, Liu J, Chen Y, et al. Analysis and simulation of the spatiotemporal evolution of habitat quality and carbon storage in the Weibei Dry Plateau Region of Shaanxi[J]. Environmental Science, 2023, 44(8):4666-4678.
[28] 段保正, 石辉, 魏小芳, 等. 西安市城区表层土壤碳储量与分布特征[J]. 水土保持通报, 2016, 36(6):293-297.
[28] Duan B Z, Shi H, Wei X F, et al. Surface soil carbon storage and distribution in Xi’an City[J]. Bulletin of Soil and Water Conservation, 2016, 36(6):293-297.
[29] 王晓晨. 基于InVEST模型的陕西秦岭(渭河流域)生态系统服务评估[D]. 西安: 西北大学, 2022.
[29] Wang X C. Evolution of ecosystem services of Weihe River Basin in Shaanxi Qinling Mountain based on InVEST model[D]. Xi’an: Northwest University, 2022.
[30] 张斌, 夏秋月, 董捷, 等. 大都市郊区土地利用变化对碳储量时空格局影响研究:以武汉市黄陂区为例[J]. 生态与农村环境学报, 2023, 39(6):699-712.
[30] Zhang B, Xia Q Y, Dong J, et al. Research on the impact of land use change on the spatio-temporal pattern of carbon storage in metropolitan suburbs:Taking Huangpi District of Wuhan City as an example[J]. Journal of Ecology and Rural Environment, 2023, 39(6):699-712.
[31] 杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4):175-182.doi:10.6046/zrzyyg.2021348.
[31] Yang L W, Zhao J, Zhu J T, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4):175-182.doi:10.6046/zrzyyg.2021348.
[32] 王佳楠, 张志. 基于Markov-PLUS模型的柴北缘土地利用变化及模拟分析[J]. 西北林学院学报, 2022, 37(3):139-148,179.
[32] Wang J N, Zhang Z. Land use change and simulation analysis in the northern margin of the Qaidam Basin based on Markov-PLUS model[J]. Journal of Northwest Forestry University, 2022, 37(3):139-148,179.
[33] 胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2022, 45(4):1125-1136.
doi: 10.12118/j.issn.1000-6060.2021.510
[33] Hu F, Zhang Y, Guo Y, et al. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions[J]. Arid Land Geography, 2022, 45(4):1125-1136.
doi: 10.12118/j.issn.1000-6060.2021.510
[34] 雒舒琪, 胡晓萌, 孙媛, 等. 耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响[J]. 中国生态农业学报(中英文), 2023, 31(2):300-314.
[34] Luo S Q, Hu X M, Sun Y, et al. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-InVEST model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2):300-314.
[35] 江民. 西南喀斯特地区生态系统服务功能时空变化及驱动因子分析[D]. 武汉: 华中农业大学, 2022.
[35] Jiang M. Study on the spatiotemporal variation and asscoiated driving factors of ecosystem services in the southwest karst of China[D]. Wuhan: Huazhong Agricultural University, 2022.
[36] Chen H, Dong N, Liang X, et al. Spatiotemporal evaluation of regional land use dynamics and its potential ecosystem impact under carbon neutral pathways in the Guangdong-Hong Kong-Macao Greater Bay Area,China[J]. Remote Sensing, 2023, 15(24):5749.
[37] 王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2):215-225.
doi: 10.16258/j.cnki.1674-5906.2023.02.001
[37] Wang C W, Luo J J, Tang H H. Analysis on the driving force of spatial and temporal differentiation of carbon storage in the Taihang Mountains based on InVEST model[J]. Ecology and Environmental Sciences, 2023, 32(2):215-225.
[1] XING Xiaotian, WANG Qi, ZHAO Jiajun, LIU Pudong, ZHANG Jingyuan. Investigating land use and carbon storage changes in Jinan metropolitan circle based on the InVEST-PLUS coupled model[J]. Remote Sensing for Natural Resources, 2025, 37(4): 118-130.
[2] ZHENG Jiaxin, PEI Xiaolong, SONG Dongyang, TIAN Rui, ZHAO Zhongqiu, BAI Hang. Identification of ecologic zones based on ecosystem service value and ecological risk index from a perspective of spatiotemporal dynamics: A case study of Qinhuangdao City, Hebei Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 233-244.
[3] LIN Xinyuan, CHENG Yangjian, XIE Wei, LI Chuanqing, NIE Wen. Exploring the ecological effects of land use changes in mining areas under different mining modes based on the Google Earth Engine[J]. Remote Sensing for Natural Resources, 2025, 37(3): 54-64.
[4] CHAI Xinyu, WU Xianwen, CHEN Xiaohui, WANG Yu, ZHAO Xingtao. Multi-scenario simulation and prediction of land use in the Pearl River Delta urban agglomeration using the coupled Markov-FLUS model[J]. Remote Sensing for Natural Resources, 2025, 37(2): 140-147.
[5] CUI Dunyue, WANG Shidong, ZHANG Xuejun. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4): 214-225.
[6] TIAN Liulan, LYU Siyu, WU Zhaopeng, WANG Juanjuan, SHI Xinpeng. Changes and spatial conflict measurement of land use in Urumqi City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 282-291.
[7] YANG Lianwei, ZHAO Juan, ZHU Jiatian, LIU Lei, ZHANG Ping. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175-182.
[8] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[9] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[10] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[11] Ruiqi GUO, Bo LU, Kailin CHEN. Dynamic simulation of multi-scenario land use change based on CLUMondo model: A case study of coastal cities in Guangxi[J]. Remote Sensing for Land & Resources, 2020, 32(1): 176-183.
[12] Yu ZHANG, Xiaoli ZHAO, Lijun ZUO, Zengxiang ZHANG, Jinyong XU. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(3): 132-139.
[13] ZHAN Yating, ZHU Yefei, SU Yiming, CUI Yanmei. Eco-environmental changes in Yancheng coastal zone based on the domestic resource satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 160-165.
[14] ZHANG Dengrong, XU Siying, XIE Bin, WU Wenyuan, LU Haifeng. Land use change of reclaimed mud flats in Jiaojiang-Taizhou Estuary in the past 40 years based on remote sensing technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 101-106.
[15] YANG Yanan, WANG Jinliang, CHEN Guangjie, XI Xiaohuan, WANG Cheng. Relationship between land use pattern and water quality change in Fuxian Lake basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 159-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech