Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1993, Vol. 5 Issue (2) : 1-2     DOI: 10.6046/gtzyyg.1993.02.01
Expert Forum |
Download: PDF(170 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Keywords  Remote sensing image      Label      Watershed algorithm      Segmentation      Region merging     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN BO
ZHANG You-Jing
CHEN Liang
LIU Xiu-Juan
GAO Shu
ZHAO Tie-Hu
Cite this article:   
CHEN BO,ZHANG You-Jing,CHEN Liang, et al. [J]. REMOTE SENSING FOR LAND & RESOURCES, 1993, 5(2): 1-2.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1993.02.01     OR     https://www.gtzyyg.com/EN/Y1993/V5/I2/1
[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[3] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[4] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[5] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[6] FENG Dongdong, ZHANG Zhihua, SHI Haoyue. Fine extraction of urban villages in provincial capitals based on multivariate data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 272-278.
[7] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[8] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[9] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[10] LI Tianqi, WANG Jianchao, WU Fang, ZHAO Zheng, ZHANG Wenkai. Construction of tidal flat DEM based on multi-algorithm waterline extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 38-44.
[11] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[12] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[13] LIU Zhao, LIAO Feifan, ZHAO Tong. Remote sensing image urban built-up area extraction and optimization method based on PSPNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 84-89.
[14] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[15] LIU Shangwang, CUI Zhiyong, LI Daoyi. Multi-task learning for building object semantic segmentation of remote sensing image based on Unet network[J]. Remote Sensing for Land & Resources, 2020, 32(4): 74-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech