Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (4) : 62-70     DOI: 10.6046/gtzyyg.2012.04.11
Technology and Methodology |
Utilization of MATLAB to Realize LST Retrieval and Thematic Mapping from FY-3/MERSI Data
YANG He-qun, YIN Qiu, ZHOU Hong-mei, GE Wei-qiang
Shanghai Center for Satellite Remote Sensing and Measurement Application, Shanghai 201199, China
Download: PDF(2616 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Currently, application-oriented researches on the data of Medium Resolution Spectral Imager (MERSI), which is on board China’s new generation polar orbit meteorological satellite FY-3, are very insufficient, due to the reason that the data as a new source have been delivered only since 2008. With the normal operation of FY-3 satellite system, it is necessary to develop an operational module for FY-3/MERSI regional land surface temperature (LST) retrieval and its post-processing, since LST is required for a wide variety of scientific studies but FY-3/MERSI’s operational LST products have not yet been provided by National Satellite Meteorological Center (NSMC). Based on an analysis of FY-3/MERSI L1 data’s HDF5 format and its channel characteristics, the authors selected the generalized single-channel algorithm developed by Jiménez-Muñoz & Sobrino to directly realize the LST retrieval at 250 m spatial resolution with MATLAB programming and the thematic mapping of LST derivative products. This paper describes the parametric processes of LST retrieval algorithm in detail, which include radiometric calibration, cloud detection, estimation of two intermediate parameters-surface emissivity and atmospheric water vapor,and calculation of thermal indexes from LST. On these bases, an automatic flowchart for FY-3/MERSI LST retrieval and thematic mapping was established. Experimental results of this flowchart applied in Shanghai thermal environmental monitoring show that it can process FY-3/MERSI L1 data in a fast, real-time and automatic way, thus suitable for operational products producing and sharing, with the saving of human resources. It is also proved that FY-3/MERSI data and various forms of LST products can reveal the spatial pattern of Shanghai thermal field and the urban heat island effect more finely and intuitively.
Keywords RS      GIS      rocky desertification      AHP-CF      quantitative prediction     
: 

TP 79

 
Issue Date: 13 November 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Yang
CHEN Jian-ping
HUANGFU Jiang-yun
TONG Li-qiang
Cite this article:   
CHENG Yang,CHEN Jian-ping,HUANGFU Jiang-yun, et al. Utilization of MATLAB to Realize LST Retrieval and Thematic Mapping from FY-3/MERSI Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 62-70.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.04.11     OR     https://www.gtzyyg.com/EN/Y2012/V24/I4/62
[1] Wan Z M,Dozier J.A Generalized Split-window Algorithm for Retrieving Land Surface Temperature from Space[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(4):892-905.

[2] Sobrino J A,El Kharraz J,Li Z L.Suface Temperature and Water Vapour Retrieval from MODIS Data[J].International Journal of Remote Sensing,2003,24:5161-5182.

[3] Olesen F S,Kind O,Reutter H.High Resolution Time Series of IR Data from a Combination of AVHRR and METEOSAT[J].Advances in Space Research,1995,16(10):141-146.

[4] 杨军,董超华,卢乃锰,等.中国新一代极轨气象卫星——风云三号[J].气象学报,2009,67(4):501-509.

Yang J,Dong C H,Lu N M,et al.FY-3A:The New Generation Polar-orbiting Meteorological Satellite of China[J].Acta Meteorological Sinica,2009,67(4):501-509(in Chinese with English Abstract).

[5] 毕研盟,杨忠东,陆其峰,等.FY-3气象卫星中分辨率光谱成像仪和扫描辐射计11μm红外窗区通道的比较[J].红外与毫米波学报,2009,28(5):330-334.

Bi Y M,Yang Z D,Lu Q F,et al.Comparison of Infrared 11μm Window Channels for Medium Resolution Spectral Imager and Visible and Infrared Radiometer on FY-3 Meteorology Satellite[J].Journal of Infrared and Millimeter Waves,2009,28(5):330-334(in Chinese with English Abstract).

[6] 向大享,刘良明,韩涛.FY-3A MERSI数据干旱监测能力评价[J].武汉大学学报:信息科学版,2010,35(3):334-338.

Xiang D X,Liu L M,Han T.Estimation of Drought Monitoring Ability of FY-3A MERSI Data[J].Geomatics and Information Science of Wuhan University,2010,35(3):334-338(in Chinese with English Abstract).

[7] 韩秀珍,郑伟,刘诚,等.基于MERSI和MODIS的太湖水体叶绿素a含量反演[J].地理研究,2011,30(2):291-300.

Han X Z,Zhen W,Liu C,et al.Estimation of Chlorophyll-a Using MERSI and MODIS Images in Taihu Lake, China[J].Geographical Research,2011,30(2):291-300(in Chinese with English Abstract).

[8] Jiménez-Mun[DD(-*2/3] ~[DD)] oz J C,Sobrino J A.A Generalized Single-channel Method for Retrieving Land Surface Temperature from Remote Sensing Data[J].Journal of Geophysical Research,2003,108(D22):4688.

[9] 覃志豪,Zhang M H,Arnon K,等.用陆地卫星TM 6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.

Qin Z H,Zhang M H,Arnon K,et al.Mono-window Algorithm for Retrieving Land Surface Temperature from Landsat TM6 data[J].Acta Geographica Sinica,2001,56(4):456-466 (in Chinese with English Abstract).

[10] Sobrino J A,Jiménez-Mun[DD(-*2/3] ~[DD)] oz J C,Paolini L.Land Surface Temperature Retrieval from Landsat TM5[J].Remote Sensing of Environment,2004,90(4):434-440.

[11] Valor E,Casselles V.Mapping of Land Surface Emissivity from NDVI:Application to European,African,and South American Areas[J].Remote Sensing of Environment,1996,57(3):167-184.

[12] 唐世浩,朱启疆,周宇宇,等.一种简单的估算植被覆盖度和恢复背景信息的方法[J].中国图象图形学报,2003,8A(11):1304-1308.

Tang S H,Zhu Q J,Zhou Y Y,et al.A Simple Method to Estimate Crown Cover Fraction and Rebuild the Background Information[J].Journal of Image and Graphics,2003,8A(11):1304-1308(in Chinese with English Abstract).

[13] 李苗苗,吴炳方,颜长珍,等.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,26(4):153-159.

Li M M,Wu B F,Yan C Z,et al.Estimation of Vegetation Fraction in the Upper Basin of Miyun Reservoir by Remote Sensing[J].Resources Science,2004,26(4):153-159(in Chinese with English Abstract).

[14] 唐仁茂,陈英英,叶建元.探空、地面及卫星资料反演水汽含量的比较[J].气象科学,2010,30(3):373-377.

Tang R M,Chen Y Y,Ye J Y.The Comparision of Water Vapor Content Retrieved by Radiosonde,Ground Station and Satellite Data[J].Scientia Meteorologia Sinica,2010,30(3):373-377(in Chinese with English Abstract).

[15] Kaufman Y J,Gao B C.Remote Sensing of Water Vapor in the Near IR from EOS/MODIS[J].IEEE Trans Geosci Remote Sens,1992,30(5): 871-884.

[16] 胡秀清,黄意玢,陆其峰,等.利用FY-3A近红外资料反演水汽总量[J].应用气象学报,2011,22(1):46-56.

Hu X Q,Huang Y B,Lu Q F,et al.Retrieving Precipitable Water Vapor Based on the Near-infrared Data of FY-3A Satellite[J].Journal of Applied Meterological Science,2011,22(1):46-56(in Chinese with English Abstract).

[17] 关敏,郭强.光学像消旋系统在FY-3 MERSI图像定位中的应用[J].应用气象学报,2008,19(4):420-427.

Guan M,Guo Q.Offsetting Image Rotation System in FY-3 MERSI’s Geolocation[J].Journal of Applied Meterological Science,2008,19(4):420-427(in Chinese with English Abstract).

[18] 权维俊,叶彩华,刘勇洪.基于FY-3A MERSI数据的地表反射率反演参数化方法[C] //中国气象学会.第七届全国优秀青年气象科技工作者学术研讨会论文集.北京:[s.n.] ,2010.

Quan W J,Ye C H,Liu Y H.A Parameterization Method of Surface Reflectance Based on FY-3A/MERSI Data[C] //Chinese Meteorological Society.The Proceedings of Seventh National Outstanding Young Meteorological Science and Technology Workers Symposium.Beijing:[s.n.] ,2010(in Chinese).

[19] 周红妹,周成虎,葛伟强,等.基于遥感和GIS的城市热场分布规律研究[J].地理学报,2001,56(2):189-197.

Zhou H M,Zhou C H,Ge W Q,et al.The Surveying on Thermal Distribution in Urban Based on GIS and Remote Sensing[J].Acta Geographica Sinica,2001,56(2):189-197(in Chinese with English Abstract).
[1] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[4] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[5] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[8] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[9] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[10] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[11] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[12] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[13] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[14] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[15] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech